New game-changing zeolite catalysts synthesized

(Top left) SBT (blue) and SBS (red) framework types. (Bottom left) Cs-corrected STEM-ADF image of PST-2, a SBS/SBT intergrowth zeolite. (Right) Light olefins (ethylene and propylene) yield and propylene/ethylene ratio in diesel cracking over H-PST-32, H-PST-2, H-USY, and H-beta catalysts.
Credit: POSTECH

A research team at POSTECH has uncovered a promising new zeolite, anticipated to be a turning point for the oil refining and petrochemical industries. This research was recently published in the scientific journal Science on July 2, 2021.

The team of researchers led by Suk Bong Hong, a professor in the Division of Environmental Science and Engineering at POSTECH, synthesized two thermally stable three-dimensional (3D) large-pore (12-ring)1 zeolites – PST-32 (POSTECH No. 32) and PST-2, the hypothetical SBS/SBT intergrowth structure2 – by using the “multiple inorganic cation” and the “charge density mismatch” synthetic strategies, respectively.

The research team identified their structures by using both powder X-ray diffraction data at the Pohang Accelerator Lab and electron microscopy analysis measured at the Instituto de Nanociencia y Materiales de Aragon (INMA). This study was co-first authored by Dr. Hwajun Lee of POSTECH and Dr. Jiho Shin of the Petrochemical Catalyst Research Center of the Korea Research Institute of Chemical Technology.

Zeolites are crystalline microporous aluminosilicates materials with well-characterized and uniform pore structures that offer a wide range of commercial applications in catalysis and separation because of their structural and chemical stability. In particular, zeolite Y, which has a cage-based large-pore (12-ring) structure, is an indispensable catalyst in the oil refining and petrochemical processes that produce numerous kinds of chemical products from crude oil. Currently, about 40% of the world’s crude oil production is made into products essential for our daily life – like gasoline – by zeolite Y-based catalysts.

The newly developed PST-32 and PST-2 are structurally similar to zeolite Y but consist of super-cages of different shapes and sizes and have excellent thermal stability. It was also confirmed that these zeolites exhibit higher catalytic activity than zeolite Y in the reaction to produce the chemicals ethylene and propylene, which are basic raw materials obtained by decomposing diesel, which is losing value as a fuel source.

“Considering the fact that zeolite Y-based catalysts account for 10% of the global catalyst market, which is more than 10 billion USD, Science seems to have deemed PST-32 and PST-2 as game changers that can disrupt the catalyst market, in addition to their scholarly significance,” remarked Professor Suk Bong Hong who led the study.

This work was supported by the National Creative Research Initiative Program (2012R1A3A2048833) through the National Research Foundation.

Media Contact

Jinyoung Huh
jyhuh@postech.ac.kr
82-542-792-415

Original Source

https://www.postech.ac.kr/eng/new-game-changing-zeolite-catalysts-synthesized/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1126/science.abi7208

Media Contact

Jinyoung Huh
Pohang University of Science & Technology (POSTECH)

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Detector for continuously monitoring toxic gases

The material could be made as a thin coating to analyze air quality in industrial or home settings over time. Most systems used to detect toxic gases in industrial or…

On the way for an active agent against hepatitis E

In order to infect an organ, viruses need the help of the host cells. “An effective approach is therefore to identify targets in the host that can be manipulated by…

A second chance for new antibiotic agent

Significant attempts 20 years ago… The study focused on the protein peptide deformylase (PDF). Involved in protein maturation processes in cells, PDF is essential for the survival of bacteria. However,…

Partners & Sponsors