Machine learning makes proteomics research more effective

The authors Mathias Wilhelm, Tobias Schmidt and Siegfried Gessulat. Image: A. Eckert / TUM

The genome of any organism contains the blueprints for thousands of proteins which control almost all the functions of life. Defective proteins lead to serious diseases, such as cancer, diabetes or dementia. Therefore, proteins are also the most important targets for drugs.

To better understand life processes and diseases and develop more appropriate therapies, it is necessary for as many proteins as possible to be analyzed simultaneously.

At present, mass spectrometry is used in order to determine the type and quantity of proteins in a biological system. However, the current methods of data analysis continue to produce many mistakes.

A team at the Technical University of Munich led by bioinformatics scientist Mathias Wilhelm and biochemist Bernhard Küster, Professor of Proteomics and Bioanalytics at the Technical University of Munich, has now succeeded in using proteomic data to train a neural network in such a way that it is able to recognize proteins much more quickly and with almost no errors.

A solution to a serious problem

Mass spectrometers do not measure proteins directly. They analyze smaller parts consisting of amino acid sequences with up to 30 building blocks. The measured spectra of these chains are compared with databases in order to assign them to a specific protein. However, the evaluation software can only use part of the information that the spectra contain. Therefore, certain proteins are not recognized or are recognized incorrectly.

“This is a serious problem,” explains Küster. The neural network developed by the TUM team uses all the information of the spectra for the process of identification. “We miss fewer proteins and make 100 times fewer mistakes,” says Bernhard Küster.

Applicable to all organisms

“Prosit”, as the researchers call the AI software, is “applicable to all organisms in the world, even if their proteomes have never been examined before,” explains Mathias Wilhelm. “This enables research which was previously inconceivable.”

With the help of 100 million mass spectra, the algorithm has been so extensively trained that it can be used for all common mass spectrometers without any additional training. “Our system is the global leader in this field,” says Küster.

A market worth billions

Clinics, biotech companies, pharmaceutical companies and research institutes are using high-performance devices of this kind; the market is already worth billions. With “Prosit”, it will be possible to develop even more powerful instruments in the future. Researchers and physicians will also be better and faster able to search for biomarkers in patients' blood or urine, or monitor therapies for their effectiveness.

The researchers also have high hopes for fundamental research. “The method can be used to track down new regulatory mechanisms in cells,” says Küster. “We hope to gain a considerable amount of knowledge here, which, in the medium and long term, will be reflected in the treatment of diseases suffered by humans, animals and plants.”

Wilhelm also expects that “AI methods such as Prosit will soon change the field of proteomics , as they can be used in almost every area of protein research”

Further information:


The study was carried out in cooperation with the companies JPT (Berlin), SAP (Potsdam) and ThermoFisher Scientific (Bremen). The project is funded by the German Federal Ministry of Education and Research (BMBF) as part of the ProteomeTools project. Prosit is available via ProteomicsDB, which is funded by the BMBF in the scope of the DIAS project.

http://www.proteomicsdb.org
http://www.proteomicsdb.org/prosit
http://www.proteometools.org/

Dr. Mathias Wilhelm und Prof. Dr. Bernhard Küster
Professorship for Proteomics and Bioanalytics
Technical University of Munich
Emil Erlenmeyer Forum 5, 85354 Freising, Germany
Tel.: +49 8161 71 5696 – E-mail: mathias.wilhelm@tum.de; kuster@tum.de
http://www.wzw.tum.de/proteomics/

Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning
Siegfried Gessulat, Tobias Schmidt, Daniel Paul Zolg, Patroklos Samaras, Karsten Schnatbaum, Johannes Zerweck, Tobias Knaute, Julia Rechenberger, Bernard Delanghe, Andreas Huhmer, Ulf Reimer, Hans-Christian Ehrlich, Stephan Aiche, Bernhard Küster und Mathias Wilhelm
Nature Methods, 27.05.2019 – DOI: 10.1038/s41592-019-0426-7
https://doi.org/10.1038/s41592-019-0426-7

https://www.tum.de/nc/en/about-tum/news/press-releases/details/article/35470/ Link to the press release

http://www.tum.de/nc/en/about-tum/news/press-releases/details/article/35471/ Further press release on the use of artificial intelligence in genome research (appearing later today)

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Endangered botanic predators

Globally, one fourth of carnivorous plants are threatened An international research team including botanist Andreas Fleischmann from SNSB-BSM has evaluated the Red List threat categories for all 860 known species…

The smallest particle sensor in the world

Styrian technological innovation – made in Graz TU Graz, ams and Silicon Austria Labs has developed a compact and energy-efficient sensor for mobile devices, which informs users in real time…

Nanostructures with a unique property

Nanoscale vortices known as skyrmions can be created in many magnetic materials. For the first time, researchers at PSI have managed to create and identify antiferromagnetic skyrmions with a unique…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close