Leishmaniasis parasites evade death by exploiting the immune response to sand fly bites

In a new study from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, scientists have discovered L. major does its damage by not only evading but also by exploiting the body's wound-healing response to sand fly bites, as reported in the August 15 issue of Science.

“This work changes the textbook picture of the lifecycle of the leishmaniasis parasite, identifying the inflammatory cell known as the neutrophil as the predominant cell involved during the initiation of infection,” says NIAID Director Anthony S. Fauci, M.D.

Employing advanced microscopy techniques, which allowed real-time imaging of the skin of living mice infected with L. major, NIAID collaborators Nathan C. Peters, Ph.D., and Jackson Egen, Ph.D., found that the neutrophils—white blood cells that ingest and destroy bacteria—play a surprising role in the development of the disease.

Neutrophils were rapidly recruited out of the circulating blood and into the skin of infected mice, where they swarmed around the sand fly bite sites and efficiently engulfed the parasites. But unlike many other infectious organisms that die inside neutrophils, L. major parasites appear to have evolved in a way to evade death, actually surviving for long periods of time inside the neutrophils. Eventually the parasites escape from neutrophils and enter macrophages, another immune cell population in the skin, where they can establish long-term infection.

“Parasites transmitted by sand flies to mice lacking neutrophils have more difficulty establishing an infection and surviving. This demonstrates the importance of neutrophils at the site of an infected sand fly bite and suggests the unexpected path taken by the parasite from sand fly to neutrophil to macrophage is a critical component of this disease,” says Dr. Peters.

In addition, says Dr. Egen, the study reveals how neutrophils leave locally inflamed blood vessels and move into tissues; provides new information on the movement of these immune cells within damaged tissue environments and upon contact with pathogens; and provides video images revealing active neutrophil entry into areas of damaged skin.

Media Contact

Linda Perrett EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors