Keeping brain development in focus

The various bone morphogenetic protein (BMP) signaling factors play an important role in early neural development in the vertebrate embryo. However, maturation of these tissues ultimately depends on the coordinated activity of factors that suppress BMP activity within the neuroectoderm, a cell population that ultimately gives rise to the nervous system.

Yoshiki Sasai and colleagues at the RIKEN Center for Developmental Biology in Kobe have now revealed a novel regulator of BMP signaling, Jiraiya1, which they originally identified in a screen for genes activated by the BMP inhibitor Chordin in the African clawed frog, Xenopus laevis2. “Jiraiya was intriguing as it encoded a novel membrane protein that had no homology to known proteins, and its expression was neural-specific,” says Sasai.

Unexpectedly, his team determined that the Jiraiya protein acts as a specific inhibitor of BMPRII, one of two core subunits of the BMP receptor, within the neuroectoderm (Fig. 1). BMPRII chemically modifies BMPRI in response to BMP binding; BMPRI subsequently activates downstream components of the signaling cascade. Initial experiments showed that Jiraiya specifically interferes with signaling at a point between ligand binding and BMPRI activation.

When overexpressed in cultured embryonic frog cells, Jiraiya depleted BMPRII from the plasma membrane by sequestering it within complexes in the cytoplasm. Evidence suggests that this protein physically interferes with the delivery of newly synthesized receptor molecules to the cell surface.

BMPRII is part of a larger family of receptor proteins that are relatively similar to one another, but features a distinctive ‘C-terminal tail domain’ (TD) that contains within it the specific Jiraiya-binding motif. This enigmatic ‘EVNNNG’ sequence appears to be a unique feature of BMPRII, although it is closely conserved in receptor homologues from other species. Transplantation of the motif onto a different receptor, ActRIIA, was sufficient to make that protein susceptible to similar Jiraiya-mediated inhibition. “The most intriguing part is that it acts only on the type II subunit of BMPR via this tail-domain whose role in dynamic signaling modulation had not been known,” says Sasai.

He and his colleagues conclude that Jiraiya appears to represent an important mechanism for the cell-specific inactivation of BMP-responsive pathways, and thereby helps define the boundaries of neural tissue development. The Jiraiya gene is found in a broad range of vertebrate species, although expression in the mouse embryo does not seem to follow the same neural-specific pattern of localization seen in frog embryos. Sasai hopes to further clarify its role in mammalian development in future studies.

The corresponding author for this highlight is based at the Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology

Journal information

Aramaki, T., Sasai, N., Yakura, R. & Sasai, Y. Jiraiya attenuates BMP signaling by interfering with Type II BMP receptors in neuroectodermal patterning. Developmental Cell 19, 547–561 (2010).

Sasai, N., Mizuseki, K. & Sasai, Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128, 2525–2536 (2001).

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Distance learning can improve women’s access to vocational training as animal health care practitioners in Nepal. Image Credit: Heifer International

Hybrid Job Training Boosts Women’s Participation in Nepal

Globally, women’s workforce participation is about 25% lower than men’s, often due to barriers such as domestic responsibilities and cultural norms. Vocational training can increase employment opportunities, but women may…

CO2release increase under repeated drying-rewetting cycles (DWCs). Image Credit: Suzuki, Nagano et al., 2025 SOIL

Drying and Rewetting Cycles Boost Soil CO2 Emissions

Niigata, Japan – The amount of carbon dioxide (CO2) released by microbial decomposition of soil organic carbon on a global scale is approximately five times greater than the amount of…

A new drug delivery system shows promise for treating a rare, aggressive form of cancer affecting pregnant women and new mothers. Oregon State's Olena Taratula and collaborators including OSU postdoctoral researcher Babak Mamnoon and Maureen Baldwin, a physician at Oregon Health & Science University, designed a type of drug nanocarrier known as a polymersome to specifically target a protein in choriocarcinoma cells. Depicted is a polymersome with its methotrexate cargo. Illustration by Parinaz Ghanbari. Image Credit: Parinaz Ghanbari

Improved Treatment Method for Rare Pregnancy-Related Cancer

PORTLAND, Ore. – A new drug delivery system shows promise for treating a rare, aggressive form of cancer affecting pregnant women and new mothers, and it has potential with other…