Insulin reduces inflammation caused by obesity

In a thesis from the Sahlgrenska Academy at the University of Gothenburg, Sweden, researchers have discovered properties of insulin which reduce inflammation caused by obesity and can therefore lower the risk of type 2 diabetes.

When you put on weight, your fat tissue grows and begins to produce a wealth of inflammatory molecules. The increase in these inflammatory molecules leaves the fat tissue in a state of chronic inflammation. This plays an important role in the development of insulin resistance, an early stage of type 2 diabetes, where the body is unable to regulate blood sugar levels using its own insulin.

“It’s still not entirely clear why obesity causes insulin resistance,” says Emelie Wallerstedt from the Institute of Medicine at the University of Gothenburg. “Inflammation could be part of the reason why obesity leads to type 2 diabetes.”

Research has shown that both obesity and insulin resistance are affected by inflammatory conditions in the body. Previously it was believed that fat tissue served merely as a depository for fat, but now scientists know that it is also an important organ for the release of a wide range of different substances, including inflammatory molecules. In the thesis, the researchers managed to identify the properties of the inflammatory molecule IL-6.

“IL-6 impairs insulin signalling, but the insulin signalling itself can also inhibit and ‘turn off’ the IL-6 signal and inflammation,” says Wallerstedt. “The protein PKCdelta also plays an important role in the regulation of the IL-6 signal, and we have shown that if we disable the function of this molecule, the inflammation decreases.”

A greater understanding of these signalling mechanisms could make it possible in the future to develop medicines that can “turn off” the inflammation and so reduce the risk of insulin resistance and other obesity-related disorders.

DIABETES
According to the World Health Organisation, the number of patients worldwide diagnosed with diabetes will more than double from 171 million in 2000 to 366 million in 2030. During the same period, the number of patients in Sweden is forecast to climb from 292,000 to 404,000, an increase of almost 40%. Diabetes can be due to the body producing too little insulin, insulin not having enough of an effect, or a combination of the two. The disease is divided into two types, 1 and 2, but both have the same symptoms and are treated in the same way, with medication and lifestyle changes.

Publication data: Wallerstedt E, Smith U, Andersson CX. Protein kinase C-ä is involved in the inflammatory effect of IL-6 in mouse adipose cells. Diabetologia. 2010 Feb 12. [Epub ahead of print].

For more information, please contact:
PhD Emelie Wallerstedt, tel: +46 706 684394,
e-mail:emelie.wallerstedt@gu.se

Media Contact

Helena Aaberg idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors