Equipment matters – Max Planck Scientists Can Predict which Immune Cells Identify Invaders

“To our surprise, we discovered that not all the members of the dendritic cell family are able to detect pathogens such as viruses”, explains Christian A. Luber, scientist at the MPI of Biochemistry. “We could predict this behavior only on the basis of their protein equipment.” The work has now been published in Immunity.

The immune system is a complex system consisting of many different cell types. In order to fight invaders successfully, it is necessary to coordinate all these cells carefully. The decision about which cell type is used for which infection and in which way, is made by a highly specialized family of immune cells: the dendritic cells.

Like cellular police officers, dendritic cells sit in tissues such as the skin, waiting for invaders. When they encounter one of these, they absorb all the information about the invader. Afterwards, they move towards the lymph nodes, where they present the information like a mug shot to other defense cells. Then, the directed immune response can begin. “Dendritic cells are so to speak cells of a general's rank that indicate to other troops the direction for combating an infection”, illustrates Christian A. Luber. “It is because of this leading role, they are so interesting for us.”

Until now, scientists have supposed that each dendritic cell is able to detect viruses. But the results of the Research Department Proteomics and Signal Transduction, headed by Matthias Mann, show that only specific members of the dendritic cell family possess the essential protein equipment for viral sensing.

In collaboration with the Bavarian Nordic GmbH, this result could be confirmed. The scientists infected dendritic cells with various viruses, including influenza viruses, and observed that one specific member of the dendritic cell family did not show any reaction. It does not have the proteins which are necessary to identify the virus. “It has already been known for some time that dendritic cells are aware of such a thing as division of labor. We were very surprised that this also applies to something as fundamental as the detection of influenza viruses”, says Christian A. Luber. “Our results could help to understand the complex mechanisms of the immune system even better.”

Original Publication:
C. A. Luber, J. Cox, H. Lauterbach, B. Fancke, M. Selbach, J.Tschopp, S. Akira, M. Wiegand, H. Hochrein, M. O'Keeffe, M. Mann: Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity, February 18, 2010.
Contact:
Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors