Effect of medication is affected by copies of genetic information

The results may help to explain why certain medications have strong side effects on sperm and eggs, and why certain organisms remain unaffected by environmental changes.

This is shown by studies that researchers from the University of Gothenburg, Sweden, together with researchers from Norway and France, are now publishing in the journal PLoS Genetics.

All cells in our bodies contain copies of the genetic information. However, different cells contain different numbers of the complete genetic information. Normal human cells usually contain two copies of the genetic information, and thus two copies of every gene. Eggs and sperm, however, only contain one set of genes.

“At the same time, the cells of many plants and amphibians contain many more copies of genetic information, and the number of copies can also vary during an organism’s development and between different stages of life,” explains Jonas Warringer, a researcher at the University of Gothenburg’s Department of Chemistry and Molecular Biology.

Research has often overlooked this variation in genetic information. However, Jonas Warringer and his colleagues have now used ordinary baker’s yeast to show that the number of copies of genetic information has a decisive effect on the properties of cells.

Jonas and his colleagues collected yeast samples from around the world and created two variants of each yeast culture – one with two copies of the genetic information, and the other with just one copy. The researchers then examined the properties of these yeast cells, such as their tolerance to cancer medication and antibiotics. The study, which is reported on in the journal PLOS One, shows that the number of copies of genetic information has a decisive effect on the properties of cells.

“The cells with two copies of genetic information showed greater tolerance to some substances,” continues Jonas, “while in other cases those with only one copy had an advantage. Surprisingly enough, these effects were even maintained in species separated by several billions of generations of evolution, suggesting that they are actually of great importance in nature.”

The researchers’ discovery may be of considerable significance in terms of knowledge about what lies behind differences between organisms in nature.

“It may also help to explain why certain medications have particularly strong side effects on sperm and eggs whereas others do not, and why certain organisms are affected by some environmental changes while others are unaffected,” he concludes.

Link to article: http://www.plosgenetics.org/doi/pgen.1003388

Contact: Jonas Warringer, Department of Chemistry and Molecular Biology
Tel.: +46 (0)31 786 3961, E-mail: jonas.warringer@cmb.gu.se
Mobile: +46 (0)730226322

Media Contact

Annika Koldenius idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors