Culling can't control deadly bat disease

White-nose syndrome, which is estimated to have killed over a million bats in a three year period, is probably caused by a newly discovered cold-adapted fungus, Geomyces destructans.

The new model examines how WNS is passed from bat to bat and concludes that culling would not work because of the complexity of bat life history and because the fungal pathogen occurs in the caves and mines where the bats live.

“Because the disease is highly virulent, our model results support the hypothesis that transmission occurs in all contact areas,” write the paper's authors, Tom Hallam and Gary McCracken, both of the University of Tennessee. “Our simulations indicated culling will not control WNS in bats primarily because contact rates are high among colonial bats, contact occurs in multiple arenas, and periodic movement between arenas occurs.”

Ground work on the model was initiated in a 2009 modeling workshop on white-nose syndrome held at the National Institute for Mathematical and Biological Synthesis (NIMBioS) in Knoxville, Tennessee. At the interdisciplinary workshop, experts in the fields of bat physiology, fungal ecology, ecotoxicology, and epidemiology discussed ways in which mathematical modeling could be applied to predict and control the spread of WNS.

“NIMBioS' support for the workshop that initiated this project was crucial in helping formulate models that could be useful in looking at white-nose syndrome,” Hallam said.

Culling of bats in areas where the disease is present is one of several options that have been considered by state and federal agencies as a way to control the disease. However, a review of management options for controlling WNS in the paper indicates that culling is ineffective for disease control in wild animals and in some cases, can exacerbate the spread.

White-nose syndrome first appeared in a cave in upstate New York in 2006, and has since spread to 14 states and as far north as Canada. Regional extinctions of the most common bat species, the little brown bat, are predicted within two decades due to WNS.

Eating up to two-thirds of their body weight in insects every night, bats help suppress insect populations ultimately reducing crop damage and the quantities of insecticides used on crops. Bats also play an important ecological role in plant pollination and seed dissemination.

The National Institute for Mathematical and Biological Synthesis (NIMBioS) (http://www.nimbios.org) brings together researchers from around the world to collaborate across disciplinary boundaries to investigate solutions to basic and applied problems in the life sciences. NIMBioS is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture with additional support from The University of Tennessee, Knoxville.

Citations: Hallam TG, McCracken GF. 2011. Management of the panzootic white-nose syndrome through culling of bats. Conservation Biology 25(1): 189-194.

Media Contact

Catherine Crawley EurekAlert!

More Information:

http://www.nimbios.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors