Creating a ground plan for stonefly evolution

Stonefly species
Photo by Shodo MTOW

Researchers led by the University of Tsukuba find that differences in egg structure among stonefly species can provide insight into the evolutionary history of the order.

If a creature with eight legs, a large abdomen, and lots of eyes comes crawling your way, even if you have never seen one like it before, you know instinctively that it is a spider. Likewise, an animal with wings, feathers, and a beak is unlikely to be mistaken for anything other than a bird. The common features of a group of animals that make them immediately recognizable are often called a ground plan or body plan, and have traditionally been used to categorize animals.

More recently, researchers have found that comparative embryology, the study of how different animals develop at the embryonic stage, can also shed light on the ground plan of a group of animals and help identify their evolutionary history.

In a study published in the December 2020 issue of Arthropod Structure and Development, a group of researchers led by the University of Tsukuba examined the eggs of five different stonefly species to infer the ground plans of each and answer lingering questions about the evolutionary relationships among stonefly species.

“Although there are more than 3,500 described species of stonefly (order Plecoptera) distributed across all continents except Antarctica, there are only two main groups (called sub-orders): Antarctoperlaria, found mainly in the Southern Hemisphere, and Arctoperlaria, which includes the Northern Hemisphere species,” explains senior author Professor Ryuichiro Machida. “While previous studies have uncovered the main features of the embryonic ground plan of Arctoperlaria, there is little information on the embryonic development of Antarctoperlaria.”

To establish the embryonic ground plan of the Antarctoperlaria, and potentially the wider order Plecoptera, the researchers examined the eggs from five different stonefly species representing three of the four main families of Antarctoperlaria. Both the entire eggs and ultrathin egg sections for transmission electron microscopy were examined.

By determining the shared and divergent characteristics of the five species, the researchers were able to infer the ground plans not only of the four main antarctoperlarian families, but also of the larger order Plecoptera.

“Eggs from two of the four main families had hard outer membranes, called chorions, which, although functionally similar, were structurally very different,” says Professor Machida. “Given that only one group of arctoperlarian eggs have a similar hard chorion, we can infer that a thin chorion is a ground plan character of Plecoptera and that a hard chorion is an evolved trait.”

Similarly, attachment structures, which anchor the eggs to the riverbed, have been regarded as being an ancestral feature. However, careful inspection revealed that they were actually acquired in parallel in each lineage, proving that determining the embryonic ground plan of a species can answer important questions about its evolutionary history.

###

The article, “Egg structure of five antarctoperlarian stoneflies (Insecta: Plecoptera, Antarctoperlaria),” was published in Arthropod Structure and Development
(DOI: 10.1016/j.asd.2020.101011).

Media Contact

Naoko Yamashina
kohositu@un.tsukuba.ac.jp
81-298-532-066

Related Journal Article

http://dx.doi.org/10.1016/j.asd.2020.101011

Media Contact

Naoko Yamashina
University of Tsukuba

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Grassland experiment analyzing soil hydrology under climate change conditions

CO2 and Global Warming: How Soils and Plants Challenge Future Droughts

What will the future of our soils – and thus also the availability of water – look like under the influence of imminent climatic changes? An international study led by…

Illustration of the thermodynamics-inspired laser beam shaping process in optical thermodynamics research.

Thermodynamics-Inspired Laser Beam Shaping Sparks a Ray of Hope

Inspired by ideas from thermodynamics, researchers at the University of Rostock and the University of Southern California have developed a new method to efficiently shape and combine high-energy laser beams….

Covalent Organic Framework COF-999 structure for CO2 absorption

A Breath of Fresh Air: Advanced Quantum Calculations Enable COF-999 CO₂ Adsorption

Quantum chemical calculations at HU enable the development of new porous materials that are characterized by a high absorption capacity for CO2 Climate experts agree: To overcome the climate crisis,…