American researchers identify genetic ‘trigger’ for stem cell differentiation

The discovery represents a further step in the ever-expanding field of understanding the ways in which stem cells develop into specific cells, a necessary prelude towards the use of stem cell therapy as a means to reverse the consequences of disease and disability.

The identification of the gene, known as Chd1, was made by Dr. Eran Meshorer of the Alexander Silberman Institute of Life Sciences at the Hebrew University and Adi Alajem, a Ph.D. student in his lab, along with the UCSF researchers.

Embryonic stem (ES) cells, which are primary cells derived from the early developing embryo, are capable of giving rise, according to their environment and conditions, to any cell type — a trait known as pluripotency. It was assumed that the ES cells have a relatively high degree of open chromatin, which is thought to enable their pluripotency, a theory which awaited proof.

Chromatin, which is found in all cells, is composed of DNA and its surrounding proteins and can be found in one of two conformations: closed chromatin (heterochromatin) – when the genetic material is packed in a way that prevents the expression of the genes — and open chromatin (euchromatin) – when chromatin is accessible to the gene expression machinery. Different cells display varying degrees of open and closed chromatin as a function of the genes required for their function.

In their current study, which was published recently in Nature magazine, the researchers from the Hebrew University and UCSF showed, using mouse ES cells, that Chd1 regulates open chromatin in ES cells. The open chromatin conformation, maintained by Chd1, enabled the expression of a wide variety of genes, leading to proper differentiation into all types of specific cells. Depletion of Chd1 in embryonic stem cells led to formation of heterochromatin (closed chromatin) and prevented the ability of the cells to generate all types of tissues.

The study, therefore, showed a proven link between open chromatin in ES cells and their pluripotency – an important finding on the road to the implementation of stem cell applications in future medical treatment.

Media Contact

Jerry Barach Hebrew University

More Information:

http://www.huji.ac.il

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors