The 'Cheshire Cat' escape strategy in response to marine viruses

The researchers studied the impact of marine viruses on Emiliania huxleyi, one of the most abundant unicellular eukaryotes in oceans that significantly influences the carbon cycle and climates. In their diploid form, i.e. when they contain a pair of chromosomes (2N), Emiliania huxleyi produce mineral scales and form gigantic populations that are visible from space.

But when attacked by marine viruses, they transform into haploid cells which only contain a single chromosome (N). These new, non-calcifying, highly motile cells are totally invisible to viruses (and undetectable on satellite photos) so that the species can live in peace to await safer times.

These scientists have called this the “Cheshire Cat” strategy, in homage to Lewis Carroll's novel “Alice in Wonderland”. In this book, the crafty and philosophical Cheshire Cat escapes being beheaded on the order of the Red Queen by rendering his body transparent. In the same way, by changing their form during the haploid phase, eukaryotes can evade biotic pressure and reinvent themselves within their own species.

Our ancestors, unicellular eukaryotes, appeared in oceans some one billion years ago and “invented” sexuality. These species are characterized by a life cycle where haploid individuals (carrying a single copy of the genome, like gametes(2)) unify to form diploid individuals that will subsequently generate haploid cells once again. During this eukaryote “double life”, humans and other multicellular eukaryotes whose haploid gametes remain imprisoned within a diploid body, tend to be the exception.

Originally, and in most eukaryotes, haploid cells multiply in their environment to form independent populations. Sexuality has allowed eukaryotes to evade constant attacks by viruses so that they could evolve towards more complex, high-performance organisms, the ecological importance of which is still markedly underestimated.

Media Contact

Julien Guillaume alfa

More Information:

http://www.cnrs.fr

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors