Distribution model for digital content on the Internet

The digitalising of information has opened up a great number of possibilities for many economic sectors which, using new technologies, have managed to considerably bring down costs of the various processes involved in their economic activity. Likewise, the spread and development of Internet has provided them with the possibility of making use of new schema for the faster and more economic distribution of materials than before, as well as immediate access to a potentially worldwide market. Nevertheless, this situation has brought with it the ease of illicitly accessing their products by millions of users who, moreover, can easily exchange them on the Net, thus violating the copyright associated with a large number of these items. These practices, generally falling under the term ‘piracy’, are currently one of the main issues for concern for almost all players in this sector, who are constantly demanding solutions to the problem.

In this context, watermarking and, more concretely, fingerprinting, are the basis for the majority of the solutions proposed to date, although a universal solution to resolve the problem completely has yet to be found.

The general aim of this thesis is to provide a definition for a new distribution model enabling the establishment of new schema for carrying out transactions with digital content, respecting all the rights involved such as authors’ copyright, clients’ rights to privacy and anonymity regarding acquisitions, etc., and with additional characteristics regarding simplicity and performance that ensure the viability of the said model.

The proposed distribution model comes under the category of detection schema for illicit copies, providing mechanisms for identifying offenders, based on fingerprinting techniques. The operation of this model is based, on the one hand, on the use of privacy and symmetric homomorphism, with attainable performances, in order to avoid ambiguities in the identification of offenders and, on the other, on the participation of different bodies amongst which stand out: a Reliability Body which, without publishing identities (forming part of the habitual functioning of this type of entity), enables anonymity to be provided for the buyers, at the same time as a correct detection of fraud. Apart from this, there is a new entity known as “Digital Publishing” that facilitates the integration of this content distribution model into business schema currently used for this type of transaction, and part of the activities of which are regulated by the Law on Intellectual Property. The flexibility of relationships amongst the various model entities is, moreover, a key factor for the practical viability of the model.

Also, for the study and assessment of security of the model, as a key aspect for its viability, a Risk Analysis scheme is defined based on the application of the ‘attack trees’ methodology. This process provides, in a systematic way, practical information about various aspects related to the level of security held by a distribution model as proposed here, as well as significant comparative data between different distribution schemes.

Media Contact

Garazi Andonegi alfa

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Targeting failure with new polymer technology to enhance sustainability

Sustainability is a complex problem with many different players and influenced by policies, society, and technical perspective. We are reminded every day in the media of the unnecessary amount of…

Solar-powered desalination system requires no extra batteries

Because it doesn’t need expensive energy storage for times without sunshine, the technology could provide communities with drinking water at low costs. MIT engineers have built a new desalination system that…

What we can learn from hungry yeast cells

EMBL Heidelberg and University of Virginia scientists have discovered a curious way in which cells adapt to starvation – a mechanism with potential cancer implications. What can stressed yeast teach…

Partners & Sponsors