Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeling empathy for a loved-one: empathy for pain activates pain-sensitive regions of the brain, says UCL study

19.02.2004


Knowing our partner is in pain automatically triggers affective pain processing regions of our brains, according to new research by University College London (UCL) scientists. The study, published in the 20th February edition of the journal Science, asked whether empathizing with the pain of others involves the re-activation of the entire pain network underlying the processing of pain in our selves. The results suggest that empathy for pain of others only involves the affective, but not sensory component of our pain experience.

The team, at UCL’s Wellcome Department of Imaging Neuroscience, set out to find out what happens to our brains when we empathise with the feelings of others, how the brain understands how something feels for another human, and whether such empathetic responses are triggered rather automatically by the mere perception of someone else being in pain.

The UCL team investigated pain-related empathy in 16 couples, under an assumption that couples are likely to feel empathy for each other. Brain activity in the woman was assessed while painful stimulation was applied to her or to her partner’s right hand through an electrode attached to the back of the hand. Both hands were placed on a tilted board allowing the subject, with help of a mirror system, to see both hands. Behind this board was a large screen upon which flashes of different colours were presented. The colours indicated whether to expect painful or non painful stimulation. This procedure enabled to measure pain-related brain activation when pain was applied to the scanned subject (the ‘pain matrix’) as well as to her partner (empathy for pain).



The team found that not the entire ‘pain matrix’ was activated when empathizing with the pain of others. Some sensory regions of your brain code for the location and the objective intensity of the painful stimulus, while other brain regions process how unpleasant you subjectively felt the pain to be. For instance, someone involved in a car accident will hardly feel pain even if they are severly injured, while if you expect to be infected by a contagious desease, every slight scratch will feel like a burning pain.

The researchers observed that empathy for pain involved the context-dependent affective aspects of pain but not the sensory-discriminative aspects of pain. It involves the same brain regions found to be involved when you anticipate getting pain. You get aroused and emotional but you do not feel the actual pain on your hand.

“The results suggest that we use emotional representations reflecting our own subjective feeling states to understand the feelings of others. Probably, our ability to empathize has evolved from a system for representing our own internal bodily states”, says author Dr Tania Singer.

“The significance of this research is that, for the first time, brain imagers were able to study empathic processes ‘in vivo’ in the usually unnatural scanning environment and show that emotional and not cognitive processess are triggered by the mere perception of a symbol indicating that your loved-one is in pain.

“Our human capacity to ‘tune in’ to others when exposed to their feelings may explain why we do not always behave selfishly in human interactions but instead engage in altruistic, helping behaviour, suggests Dr Tania Singer.

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

More articles from Social Sciences:

nachricht The competitive edge: Dietary competition played a key role in the evolution of early primates
01.08.2018 | Grand Valley State University

nachricht Diversity and education influence India’s population growth
31.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>