Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeling empathy for a loved-one: empathy for pain activates pain-sensitive regions of the brain, says UCL study

19.02.2004


Knowing our partner is in pain automatically triggers affective pain processing regions of our brains, according to new research by University College London (UCL) scientists. The study, published in the 20th February edition of the journal Science, asked whether empathizing with the pain of others involves the re-activation of the entire pain network underlying the processing of pain in our selves. The results suggest that empathy for pain of others only involves the affective, but not sensory component of our pain experience.

The team, at UCL’s Wellcome Department of Imaging Neuroscience, set out to find out what happens to our brains when we empathise with the feelings of others, how the brain understands how something feels for another human, and whether such empathetic responses are triggered rather automatically by the mere perception of someone else being in pain.

The UCL team investigated pain-related empathy in 16 couples, under an assumption that couples are likely to feel empathy for each other. Brain activity in the woman was assessed while painful stimulation was applied to her or to her partner’s right hand through an electrode attached to the back of the hand. Both hands were placed on a tilted board allowing the subject, with help of a mirror system, to see both hands. Behind this board was a large screen upon which flashes of different colours were presented. The colours indicated whether to expect painful or non painful stimulation. This procedure enabled to measure pain-related brain activation when pain was applied to the scanned subject (the ‘pain matrix’) as well as to her partner (empathy for pain).



The team found that not the entire ‘pain matrix’ was activated when empathizing with the pain of others. Some sensory regions of your brain code for the location and the objective intensity of the painful stimulus, while other brain regions process how unpleasant you subjectively felt the pain to be. For instance, someone involved in a car accident will hardly feel pain even if they are severly injured, while if you expect to be infected by a contagious desease, every slight scratch will feel like a burning pain.

The researchers observed that empathy for pain involved the context-dependent affective aspects of pain but not the sensory-discriminative aspects of pain. It involves the same brain regions found to be involved when you anticipate getting pain. You get aroused and emotional but you do not feel the actual pain on your hand.

“The results suggest that we use emotional representations reflecting our own subjective feeling states to understand the feelings of others. Probably, our ability to empathize has evolved from a system for representing our own internal bodily states”, says author Dr Tania Singer.

“The significance of this research is that, for the first time, brain imagers were able to study empathic processes ‘in vivo’ in the usually unnatural scanning environment and show that emotional and not cognitive processess are triggered by the mere perception of a symbol indicating that your loved-one is in pain.

“Our human capacity to ‘tune in’ to others when exposed to their feelings may explain why we do not always behave selfishly in human interactions but instead engage in altruistic, helping behaviour, suggests Dr Tania Singer.

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

More articles from Social Sciences:

nachricht New measure for the wellbeing of populations could replace Human Development Index
07.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Because not only arguments count
30.10.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>