Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers go from heaven to Earth in ’lifeguard’ test

16.06.2004


What happened in Vegas didn’t stay in Vegas for device’s inventors



Back in 2002, Stanford University engineers Kevin Montgomery, PhD, and Carsten Mundt, PhD, found themselves bored at a conference in Las Vegas. So they did what you’d expect from any researchers stuck in Sin City with frequent thoughts about life in outer space: They headed to a casino, downed a few cocktails and drew up a plan for the ideal physiological monitor for astronauts.

But here’s what you wouldn’t expect: The pair’s scheme has come to life, a result of a Stanford-NASA collaboration to develop the physiological monitor and test it in a gamut of extreme environments. If the device passes NASA muster next year, it will become part of astronauts’ wardrobes and will connect them to doctors who can monitor their health in real-time - something outside the realm of possibility given current NASA technology. Meanwhile, the team is using the device, called LifeGuard, to gather physiological data of use to the space program and is exploring terrestrial uses as well.


Today Montgomery, a researcher in the School of Medicine’s surgery department, is director of engineering at the Stanford University-NASA National Center for Space Biological Technologies, and Mundt, also a researcher in surgery, is the center’s chief hardware engineer. The center picks up where Montgomery and Mundt’s previous collaborations with NASA left off.

At the time of the Las Vegas conference, Montgomery and Mundt had created a personal physiological monitor demo for John Hines, manager of the astrobionics program at NASA Ames in nearby Mountain View. "We used the demo to help engineers at NASA Johnson Space Center start figuring out what they’d need for the astronauts. They could play with it and zero in on the requirements," said Montgomery.

Though similar devices existed, none provided the wearability and functionality NASA required. After Montgomery and Mundt received the go-ahead from Hines, the team built the system, designing it to relay astronauts’ physiological data to doctors on Earth and to withstand the wear and tear of use aboard the International Space Station.

The outcome was a computer about the size of an old-fashioned Walkman that straps on just above the wearer’s waist and a base station that can run on a tablet, laptop, desktop or pocket PC. The wearable computer, called the CPOD, takes in 2-lead ECG and respiration information from stick-on sensors. In addition, it detects temperature, body orientation and acceleration, pulse rate and blood oxygen level and supports a plug-in blood pressure monitor.

Once the device gathers the information, it can either stream or download it wirelessly to the base station, which then transmits the data over the Internet to any designated computer.

In February 2003, Greg Kovacs, MD, PhD, associate professor of electrical engineering, joined the testing effort and offered to wear it hiking and climbing. The hikes revealed glitches, electrode problems and provided feedback on comfort and ease of use.

"We learned: Don’t use electrodes that have very sticky electrode gel. That stuff comes off when you sweat," said Mundt, who took part in the climbs.

The most dramatic test so far put the equipment through an environment as close to extraterrestrial as possible. On that trip, the expedition members wore LifeGuard on a journey to the top of Licancabur volcano, on the border of Bolivia and Chile. It’s an environment that combines low-oxygen, low atmospheric pressure and high ultraviolet radiation. Once at the peak, the team leader tested the equipment in a yet more rigorous environment by jumping into a lake. At about 19,200 feet, it’s one of the planet’s highest. Kovacs also carried out the key mission for the LifeGuard team: live transmission of his vitals from a high-altitude, remote location to computers stationed in the Bay Area.

In March, four team members tested LifeGuard aboard NASA’s KC-135, a jet airplane that provides a taste of zero gravity by flying a roller-coaster-course trajectory. At the top of the arcs, the aircraft and its contents are weightless. "The CPODs worked beautifully," said Judy Swain, MD, professor and chair of Stanford’s Department of Medicine, who was part of the LifeGuard testing team.

Not only did the devices perform perfectly, they proved their value for monitoring astronauts with a variety of illnesses including space sickness, a combination of symptoms that occur in the weightless conditions of space flight.

The team feels confident that the device is ready for NASA’s assessment, which will probably take place next year. That’s great news for NASA’s Hines, whose goal is to develop the capability to provide medical monitoring of astronauts in space. "One day, hopefully, we’ll fly this technology to the Moon and maybe Mars," Hines said.

But the testing isn’t over. "We want to start looking at how it could be improved for other applications - not just space," said Montgomery.

And now that LifeGuard has proved itself, the device is in demand. Among the requests are several from NASA, including one to monitor astronauts during simulated spacewalks in the Neutral Buoyancy Lab, a huge 40-foot-deep pool of water at Johnson Space Center that astronauts use to get the hang of zero-gravity conditions.


The Stanford-NASA team has its own ideas for uses. Swain and Kovacs, who serve as principal investigators for the center, are planning to apply for grants to support several clinical trials: one that would use the device to help quantify the success of cardiac interventions and another that would use it to aid diagnosis of sleep disorders.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford.

| EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

Robocabs: The mobility of the future?

25.06.2019 | Studies and Analyses

Skipping Meat on Occasion May Protect Against Type 2 Diabetes

25.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>