Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer calculates when reinforced concrete will rust

21.03.2003


Dutch researchers have developed a computer model that calculates the rate at which salt and moisture penetrate reinforced concrete. The model can be used for both the design of new concrete structures as well as analysing the lifespan of existing ones.

Sander Meijers from Delft University of Technology studied the relationship between moisture transport and salt penetration in concrete. Concrete structures such as bridges and dams are designed with as long a lifespan as possible. If these structures are built in the sea or are exposed a lot to gritting salt then the reinforcement rods in the concrete eventually rust over the course of time. The consequences are damage and generally expensive repairs.

The researchers built a computer model that calculated how concrete responded to being exposed to salt and moisture. The model can process various external temperatures, humidities and salt concentrations. Furthermore, it can deal with so-called carbonate effects. These are changes in the chemical composition of the concrete that can result in different moisture characteristics.



The software developed can calculate a number of linked transport phenomena simultaneously. This means that reactions of concrete under various temperatures and degrees of humidity can be calculated.

Various studies were carried out to observe how salt penetrates concrete. For example, the researchers have used the model to show moisture transport in cement stone. Calculations have also been performed for concrete blocks submerged in seawater. In addition to this the researchers have studied how concrete responds to periodic exposure to salty water.

Meijers’ model and the associated software can be used for both the design of new concrete structures as well as the analysis of existing ones. With this it is possible to simulate how concrete is affected by various factors.

For further information please contact Dr Sander Meijers (Delft University of Technology, now working at Intron), tel +31 (0)345 585170, fax +31 (0)345 585171, e-mail: sme@intron.nl. The doctoral thesis was defended on 10 March 2003. Dr Meijers’ supervisors were Prof. J.M.J.M. Bijen and Prof. R. de Borst. An illustration of a damaged concrete bridge can be obtained from the Department of Information and Communication, Netherlands Organisation for Scientific Research (tel. +31 (0)70 344 0713, e-mail: voorlichting@nwo.nl).

The research was funded by the Technology Foundation STW.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>