Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New flat motor can drive shape shifters, movers and shakers

29.01.2003


Edge view of Penn State flat motor developed by Dr. Gary Koopmann, distinguished professor of mechanical engineering; Chen Weicheng, CAV laboratory manager; George Lesieutre, professor of aerospace engineering, and Eric Mockensturm, assistant professor of mechanical enigneering all at Penn State and Jeremy Frank, president, KCF Industries.
Credit: Jeremy Frank, KCF Technologies


Head-on view of Penn State flat motor developed by Dr. Gary Koopmann, distinguished professor of mechanical engineering; Chen Weicheng, CAV laboratory manager; George Lesieutre, professor of aerospace engineering, and Eric Mockensturm, assistant professor of mechanical enigneering all at Penn State and Jeremy Frank, president, KCF Industries.
Credit: Jeremy Frank, KCF Technologies


Penn State engineers have developed a low- cost, high-torque rotary motor, based on "smart" materials, that can be configured in a wide range of formats, including one as flat and thin as a CD case.

The inventors say that, in the flat format, the motor could be used to drive changes in the camber of airplane wings or fins, essentially shape-shifting the curvature of the wing or fin surface.

In other formats, the motor could work in tightly integrated spaces where other motors can’t fit. For example, the "smart" material motor could serve as the drive element in thinner, lighter, laptop computers or other compact, portable consumer products or in manufacturing equipment that processes things by moving or shaking them.



Dr. Gary Koopmann, distinguished professor of mechanical engineering and director of Penn State’s Center for Acoustics and Vibration (CAV), led the development team. He says the flat motor has a starting torque advantage over conventional electric motors since speed is not required for high torque output.

The prototype flat motor has reached a free speed of 760 revolutions per minute and a maximum torque of 0.4 Nm.

Components for the prototype cost less than $150 off-the-shelf. Koopmann estimates that an optimized version of the flat motor might cost as little as $10 to mass produce.

The device was patented recently by Penn State. The inventors are Koopmann; Dr. Weicheng, CAV laboratory manager; Dr. George Lesieutre, professor of aerospace engineering and CAV associate director; Dr. Jeremy Frank, president, KCF Technologies; and Dr. Eric Mockensturm, assistant professor of mechanical engineering.

The new motor works by translating the bending of a "smart" material into the turning of a shaft. The "smart" material the inventors use is PZT (lead zirconate titanate), an inexpensive, commonly available piezoelectric that elongates when an electric field is applied to it. By bonding PZT to both sides of a tiny, flexible, metallic strip, they create an "arm" that can bend to the left and right in response to an electric field.

Placing 12 of the "arms" star-fish-style around a central shaft, the inventors stimulate them simultaneously and they all bend in the same direction. A passive clamping system, either a ball and spring arrangement or a commercial one-way roller clutch, acts as a kind of turnstile that only allows the motion to ratchet along in one direction, translating the bending into rotation of the central shaft.

Koopmann explains that using passive clamping significantly improves the performance and lowers the cost of the flat motor versus inch-worm type designs, which also use the small oscillatory motions of smart materials but require precision machining.

The development of the new motor was supported by grants from the Defense Advanced Research Projects Agency. The motor has been described in "Optimization of a Resonant Bimorph Actuator Drive" published in the Proceedings of DETC 01, the ASME 2001 Design Engineering Technical conference held Sept. 9-12, 2001 in Pittsburgh, Pa.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>