Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young stellar objects: the source of gas emission around Herbig Ae/Be stars

13.10.2008
This week, Astronomy & Astrophysics is publishing new observations with AMBER/VLTI of the gas component in the vicinity of young stars.

An international team of astronomers led by E. Tatulli (Grenoble, France) and S. Kraus (Bonn, Germany) [1] used the unique capability of the VLT near-infrared interferometer, coupled with spectroscopy, to probe the gaseous environment of Herbig Ae/Be stars. These are young stars of intermediate mass (approximately 2 to 10 solar masses), which are still contracting and often show strong line emissions.

In recent years, young stars have been widely studied with near-infrared interferometers, allowing astronomers to study their close environment with high spatial resolution (see for example the A&A special feature on AMBER/VLTI first results, published in March 2007). So far, near-infrared interferometry has been used mostly to probe the dust that closely surrounds young stellar objects. However, dust is only 1% of the total mass of protoplanetary disks, while gas is their main component (99%) and may be responsible for the structure of forming planetary disks.

High-resolution observations of emission spectral lines are then required to trace this gaseous component. Various processes have been proposed as the source of emission lines. For example, they might come from an accreting gaseous inner disk or might be due to either magnetospheric accretion processes or to a stellar wind. Most of these processes would take place close to the star (less than 1 AU), and are therefore not accessible with direct imaging facilities.

Using the capabilities of AMBER/VLTI, including milli-arcsecond spatial resolution [2], the team has now been able to trace the inner gaseous environment of six Herbig Ae/Be stars. They measured the geometry and position of the emitting regions surrounding these stars, for several diagnostic emission lines [3]. For two Herbig Be stars, they find that the emission line is probably associated with mass infall; in one case (51 Ophiuchi), the emission line could originate within a dust-free hot gaseous disk. In the other one (HD 98922), the emitting region is very compact and might originate from magnetospheric accretion, through which the material is transported from the disk to the stellar surface. For the four other Herbig Ae/Be stars that have been observed, the emission line would be related to mass outflow, with gas lifted from the surface of a circumstellar disk and then ejected from the stellar system.

Until now, the origin of the gas emission from these young stars was still being debated, because in most earlier investigations of the gas component, the spatial resolution was not high enough to study the gas distribution close to the star. Applying the new high-resolution feature of the AMBER instrument to gas emission observations, the team was then able to show that the gas emission can distinctly trace the physical processes acting close to the star.

[1] The team includes S. Kraus, K.-H. Hofmann, A. Meilland, N. Nardetto, T. Preibisch, D. Schertl, G. Weigelt (MPI, Bonn, Germany), E. Tatulli (INAF, Italy / Laboratoire d'Astrophysique de Grenoble, France), M. Benisty, J.-P. Berger, F. Malbet, F. Ménard (Laboratoire d'Astrophysique de Grenoble, France), O. Chesneau, P. Stee, (OCA, France), A. Natta (INAF, Italy), M. Smith (Univ. of Kent, UK), C. Gil, L. Testi (ESO), and S. Robbe-Dubois (Université de Nice, France).

[2] Observing the Moon with milli-arcsecond resolution, one should be able to distinguish details about 2 meters in size.

[3] They used the Brackett-Γ line of hydrogen at 2.166 µm and the CO emission feature at 2.3 µm as diagnostic lines.

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/338/42/lang,en/
http://www.obspm.fr

More articles from Physics and Astronomy:

nachricht Weizmann physicists image electrons flowing like water
11.12.2019 | Weizmann Institute of Science

nachricht Revealing the physics of the Sun with Parker Solar Probe
11.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>