Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young stellar objects: the source of gas emission around Herbig Ae/Be stars

13.10.2008
This week, Astronomy & Astrophysics is publishing new observations with AMBER/VLTI of the gas component in the vicinity of young stars.

An international team of astronomers led by E. Tatulli (Grenoble, France) and S. Kraus (Bonn, Germany) [1] used the unique capability of the VLT near-infrared interferometer, coupled with spectroscopy, to probe the gaseous environment of Herbig Ae/Be stars. These are young stars of intermediate mass (approximately 2 to 10 solar masses), which are still contracting and often show strong line emissions.

In recent years, young stars have been widely studied with near-infrared interferometers, allowing astronomers to study their close environment with high spatial resolution (see for example the A&A special feature on AMBER/VLTI first results, published in March 2007). So far, near-infrared interferometry has been used mostly to probe the dust that closely surrounds young stellar objects. However, dust is only 1% of the total mass of protoplanetary disks, while gas is their main component (99%) and may be responsible for the structure of forming planetary disks.

High-resolution observations of emission spectral lines are then required to trace this gaseous component. Various processes have been proposed as the source of emission lines. For example, they might come from an accreting gaseous inner disk or might be due to either magnetospheric accretion processes or to a stellar wind. Most of these processes would take place close to the star (less than 1 AU), and are therefore not accessible with direct imaging facilities.

Using the capabilities of AMBER/VLTI, including milli-arcsecond spatial resolution [2], the team has now been able to trace the inner gaseous environment of six Herbig Ae/Be stars. They measured the geometry and position of the emitting regions surrounding these stars, for several diagnostic emission lines [3]. For two Herbig Be stars, they find that the emission line is probably associated with mass infall; in one case (51 Ophiuchi), the emission line could originate within a dust-free hot gaseous disk. In the other one (HD 98922), the emitting region is very compact and might originate from magnetospheric accretion, through which the material is transported from the disk to the stellar surface. For the four other Herbig Ae/Be stars that have been observed, the emission line would be related to mass outflow, with gas lifted from the surface of a circumstellar disk and then ejected from the stellar system.

Until now, the origin of the gas emission from these young stars was still being debated, because in most earlier investigations of the gas component, the spatial resolution was not high enough to study the gas distribution close to the star. Applying the new high-resolution feature of the AMBER instrument to gas emission observations, the team was then able to show that the gas emission can distinctly trace the physical processes acting close to the star.

[1] The team includes S. Kraus, K.-H. Hofmann, A. Meilland, N. Nardetto, T. Preibisch, D. Schertl, G. Weigelt (MPI, Bonn, Germany), E. Tatulli (INAF, Italy / Laboratoire d'Astrophysique de Grenoble, France), M. Benisty, J.-P. Berger, F. Malbet, F. Ménard (Laboratoire d'Astrophysique de Grenoble, France), O. Chesneau, P. Stee, (OCA, France), A. Natta (INAF, Italy), M. Smith (Univ. of Kent, UK), C. Gil, L. Testi (ESO), and S. Robbe-Dubois (Université de Nice, France).

[2] Observing the Moon with milli-arcsecond resolution, one should be able to distinguish details about 2 meters in size.

[3] They used the Brackett-Γ line of hydrogen at 2.166 µm and the CO emission feature at 2.3 µm as diagnostic lines.

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/338/42/lang,en/
http://www.obspm.fr

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>