An international team of astronomers led by E. Tatulli (Grenoble, France) and S. Kraus (Bonn, Germany) [1] used the unique capability of the VLT near-infrared interferometer, coupled with spectroscopy, to probe the gaseous environment of Herbig Ae/Be stars. These are young stars of intermediate mass (approximately 2 to 10 solar masses), which are still contracting and often show strong line emissions.
In recent years, young stars have been widely studied with near-infrared interferometers, allowing astronomers to study their close environment with high spatial resolution (see for example the A&A special feature on AMBER/VLTI first results, published in March 2007). So far, near-infrared interferometry has been used mostly to probe the dust that closely surrounds young stellar objects. However, dust is only 1% of the total mass of protoplanetary disks, while gas is their main component (99%) and may be responsible for the structure of forming planetary disks.
High-resolution observations of emission spectral lines are then required to trace this gaseous component. Various processes have been proposed as the source of emission lines. For example, they might come from an accreting gaseous inner disk or might be due to either magnetospheric accretion processes or to a stellar wind. Most of these processes would take place close to the star (less than 1 AU), and are therefore not accessible with direct imaging facilities.
Using the capabilities of AMBER/VLTI, including milli-arcsecond spatial resolution [2], the team has now been able to trace the inner gaseous environment of six Herbig Ae/Be stars. They measured the geometry and position of the emitting regions surrounding these stars, for several diagnostic emission lines [3]. For two Herbig Be stars, they find that the emission line is probably associated with mass infall; in one case (51 Ophiuchi), the emission line could originate within a dust-free hot gaseous disk. In the other one (HD 98922), the emitting region is very compact and might originate from magnetospheric accretion, through which the material is transported from the disk to the stellar surface. For the four other Herbig Ae/Be stars that have been observed, the emission line would be related to mass outflow, with gas lifted from the surface of a circumstellar disk and then ejected from the stellar system.
Until now, the origin of the gas emission from these young stars was still being debated, because in most earlier investigations of the gas component, the spatial resolution was not high enough to study the gas distribution close to the star. Applying the new high-resolution feature of the AMBER instrument to gas emission observations, the team was then able to show that the gas emission can distinctly trace the physical processes acting close to the star.
[1] The team includes S. Kraus, K.-H. Hofmann, A. Meilland, N. Nardetto, T. Preibisch, D. Schertl, G. Weigelt (MPI, Bonn, Germany), E. Tatulli (INAF, Italy / Laboratoire d'Astrophysique de Grenoble, France), M. Benisty, J.-P. Berger, F. Malbet, F. Ménard (Laboratoire d'Astrophysique de Grenoble, France), O. Chesneau, P. Stee, (OCA, France), A. Natta (INAF, Italy), M. Smith (Univ. of Kent, UK), C. Gil, L. Testi (ESO), and S. Robbe-Dubois (Université de Nice, France).
[2] Observing the Moon with milli-arcsecond resolution, one should be able to distinguish details about 2 meters in size.
[3] They used the Brackett-Γ line of hydrogen at 2.166 µm and the CO emission feature at 2.3 µm as diagnostic lines.
Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/338/42/lang,en/
http://www.obspm.fr
Further reports about: > Young stellar objects > gas component > gas emission > magnetospheric accretion > spectroscopy > stellar wind
Gravitational waves will settle cosmic conundrum
15.02.2019 | Simons Foundation
Spintronics by 'straintronics'
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie
For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.
The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...
Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens
Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...
Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light
When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...
The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...
Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.
DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.
Anzeige
Anzeige
Global Legal Hackathon at HAW Hamburg
11.02.2019 | Event News
The world of quantum chemistry meets in Heidelberg
30.01.2019 | Event News
16.01.2019 | Event News
Laser Processes for Multi-Functional Composites
18.02.2019 | Process Engineering
Scientists Create New Map of Brain’s Immune System
18.02.2019 | Studies and Analyses
Loss of identity in immune cells explained
18.02.2019 | Health and Medicine