Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Writing and deleting magnets with lasers

19.04.2018

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia in Charlottesville, USA have found a way to write and delete magnets in an alloy using a laser beam - a surprising effect. The reversibility of the process opens up new possibilities in the fields of material processing, optical technology, and data storage.


A strong laser pulse disrupts the arrangement of atoms in an alloy and creates magnetic structures (left). A second, weaker, laser pulse allows the atoms to return to their original lattice sites (right).

Credit: Sander Münster/HZDR

Researchers of the HZDR, an independent German research laboratory, studied an alloy of iron and aluminum. It is interesting as a prototype material because subtle changes to its atomic arrangement can completely transform its magnetic behavior.

"The alloy possesses a highly ordered structure, with layers of iron atoms that are separated by aluminum atomic layers. When a laser beam destroys this order, the iron atoms are brought closer together and begin to behave like magnets," says HZDR physicist Rantej Bali.

Bali and his team prepared a thin film of the alloy on top of transparent magnesia through which a laser beam was shone on the film. When they, together with researchers of the HZB, directed a well-focused laser beam with a pulse of 100 femtoseconds (a femtosecond is a millionth of a billionth of a second) at the alloy, a ferromagnetic area was formed. Shooting laser pulses at the same area again - this time at reduced laser intensity - was then used to delete the magnet.

With a single laser pulse at reduced intensity, about half of the previous level of magnetization was retained, and with a series of laser pulses, the magnetization disappeared altogether. These observations were made at the HZB-run Bessy II synchrotron using a microscope that deploys soft X-rays to study the magnetic contrast.

Working with a team from the University of Virginia in Charlottesville, USA the scientist were able to clarify what happens in the alloy during this process. The simulations of the American colleagues show that the ferromagnetic state is formed when the ultra-short laser pulse heats up the thin-film material to the extent that it melts, all the way from the surface to the magnesia interface.

As the alloy cools down it enters a state known as a "supercooled liquid" wherein it remains molten, despite the temperature having dropped below the melting point. This state is reached because of a lack of nucleation sites - microscopic locations where the atoms can begin to arrange into a lattice. As the atoms move around in the supercooled state in search for nucleation sites, the temperature continues to drop. Finally, the atoms in the supercooled state must form a solid lattice, and like in a game of musical chairs, the iron and aluminum atoms end up being trapped in random positions within the lattice. The process takes only a few nanoseconds and the random arrangement of atoms renders a magnet.

The same laser, but with a reduced intensity, rearranges the atoms into a well ordered structure. The weaker laser shot melts only thin layers of the film, creating a molten pool sitting on the solid alloy. Within a nanosecond after melting, and as soon as the temperature drops below the melting point, the solid part of the film starts to regrow, and the atoms rapidly rearrange from the disordered liquid structure to the crystal lattice.

With the lattice already formed and the temperature still being high enough, the atoms possess sufficient energy to diffuse through the lattice and separate into layers of iron and aluminum. PhD student Jonathan Ehrler summarizes: "To write magnetic areas, we have to melt the material from the surface down to the interface, while to delete it, we only need to melt a fraction of it."

In further experiments, the scientists now want to investigate this process in other ordered alloys. They also want to explore the impact of a combination of several laser beams. Interference effects could be used to generate patterned magnetic materials over large areas. "The remarkably strong changes to the material property may well lead to some interesting applications," reckons Bali. Lasers are used for many different purposes in industry, for instance in material processing. This discovery may also open further avenues in optical and data storage technologies.

###

Publication: Jonathan Ehrler et al., ACS Applied Materials & Interfaces, "Laser-rewriteable Ferromagnetism at Thin Film Surfaces", DOI: http://dx.doi.org/10.1021/acsami.8b01190

Further information:

Dr. Rantej Bali / Jonathan Ehrler
Institute of Ion Beam Physics and Materials Research at HZDR
Phone +49 351 260 - 2919
Email: r.bali@hzdr.de / j.ehrler@hzdr.de

Media Contact

Christine Bohnet
c.bohnet@hzdr.de
49-351-260-2450

 @HZDR_Dresden

http://www.hzdr.de/db/Cms?pNid=0

Christine Bohnet | EurekAlert!
Further information:
http://www.hzdr.de/presse/magnetische_strukturen
http://dx.doi.org/10.1021/acsami.8b01190

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>