Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two world records at the FRM II: The world’s strongest and purest neutron beam

13.02.2012
The world’s strongest neutron beam is produced by a scientific instrument at the research neutron source FRM II (Forschungs-Neutronenquelle Heinz Maier-Leibnitz) at the Technischen Universitaet Muenchen (TUM).

But that is not all: During the long maintenance break in 2011, the instrument PGAA (Prompt Gamma Activation Analysis) was improved to give it the best ratio between usable neutrons and noisy background radiation worldwide. It is now possible to determine the elementary composition of even smallest samples in the milligram range. The instrument is operated by the Universities of Cologne (Germany) and Bern (Switzerland).


Neutrons of the PGAA instrument activate the atoms of samples for which the precise composition is to be determined. The methodology is so extremely accurate that it is even possible to determine which mine delivered the ore used in a given antique coin. The PGAA generates up to 60 billion neutrons per square millimeter per second. That is an absolute world record among the scientific instruments of all research neutron sources. Other instruments produce only around half as many neutrons. “We require this high flux for small samples, for example,” explains Dr. Petra Kudejova, the responsible researcher at the PGAA. “These are samples of around one milligram.”

“We already had the highest neutrons flux, but also high levels of background radiation. That refers to radiation which derives not directly from the sample, but rather from scattered neutrons, which interfere with the measurements,” adds Dr. Zsolt Revay, also a researcher at the PGAA.

“A low level of background radiation is a prerequisite for examining small samples that react only very weakly to neutrons.” Revay and his team used the long maintenance break at the FRM II in 2011 to improve and reconfigure the shielding of the instrument in such a way that the distracting background radiation is reduced to merely one tenth of its prior value. The PGAA instrument is used primarily in the analysis of the elementary composition of objects. The measurement device can detect a single atom among one million other atoms.

This made it possible, for example, to detect tiniest traces of harmful substances captured by Technische Universitaet Muenchen Corporate Communications Center 80290 Munich, Germany www.tum.de

Dr. Ulrich Marsch Head of Corporate Communications +49 89 289 22778 marsch@zv.tum.de

Dr. Andreas Battenberg Garching Campus PR Officer +49 89 289 10510 battenberg@zv.tum.de

Andrea Voit PR-Referentin FRM II +49 89 289 12141 Andrea.voit@frm2.tum.de an air filter. A magnetic meteorite sample weighing less than one milligram was also analyzed. The results of the analysis helped classify the meteorite. In this way, a theory making a meteorite impact in North America around 13,000 years ago responsible for the extinction of the mammoths could be verified.

Contact:
Dr. Zsolt Revay, Dr. Petra Kudejova
Technische Universitaet Muenchen
Research Neutron Source Heinz Maier-Leibnitz (FRM II)
Lichtenbergstr. 1, 85748 Garching, Germany
Tel.: +49 89 289 12694 / 14765
E-Mail: zsolt.revay@frm2.tum.de, petra.kudejova@frm2.tum.de
Internet: http://tinyurl.com/88u6b58

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Physics and Astronomy:

nachricht Fusion by strong lasers
05.12.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht NASA's OSIRIS-REx mission explains Bennu's mysterious particle events
05.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>