Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Western researcher solves 37-year old space mystery

17.03.2010
A researcher from The University of Western Ontario has helped solve a 37-year old space mystery using lunar images released yesterday by NASA and maps from his own atlas of the moon.

Phil Stooke, a professor cross appointed to Western’s Departments of Physics & Astronomy and Geography, published a major reference book on lunar exploration in 2007 entitled, “The International Atlas of Lunar Exploration.”

Yesterday, images and data from Nasa’s Lunar Reconnaissance Orbiter (LRO) were posted. The LRO, scheduled for a one year exploration mission about 31 miles above the lunar surface, will produce a comprehensive map, search for resources and potential safe landing sites and measure lunar temperatures and radiation levels.

http://www.nasa.gov/mission_pages/LRO/news/image_release.html

Using his atlas and the NASA images, Stooke pinpointed the exact location of the Russian rover Lunokhod 2, discovering tracks left by the lunar sampler 37 years ago after it made a 35-kilometre trek. The journey was the longest any robotic rover has ever been driven on another celestial body.

http://www.uwo.ca/local_files/Lunokhod_2.jpg

As soon as the NASA photos were released, scientists around the world, including Stooke, began work to locate the rover. Stooke set up a searchable image database and located the photograph he needed, among thousands of others.

“The tracks were visible at once,” says Stooke. “Knowing the history of the mission, it’s possible to trace the rover’s activities in fine detail. We can see where it measured the magnetic field, driving back and forth over the same route to improve the data. And we can also see where it drove into a small crater, and accidentally covered its heat radiator with soil as it struggled to get out again. That ultimately caused it to overheat and stop working. And the rover itself shows up as a dark spot right where it stopped.”

The find, he adds will mean that older maps published by Russia will now need to be revised.

Stooke says that NASA scientists have used his atlas in both preparation and data recovery.

His next project is a similar volume on Mars exploration which will include the best maps of the moons of Mars.

Stooke is also a member of Western’s Centre for Planetary Science and Exploration (CPSX).

CPSX represents the largest concentration of planetary scientists in Canada and has resulted in Western becoming the epicentre for planetary science and exploration in the country – particularly for graduate students.

For more information or images, please contact Stooke at pjstooke@uwo.ca

MEDIA CONTACT: Jeff Renaud, Senior Media Relations Officer, 519-661-2111, ext. 85165

Jeff Renaud | EurekAlert!
Further information:
http://www.uwo.ca
http://communications.uwo.ca/com/media_newsroom/media_newsroom_stories/_western_researcher_solves_37-year_old_space_mystery_20100316445

Further reports about: Lunar Exploration Mars NASA lunar base space mystery

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>