Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vortex loops could untie knotty physics problems

04.03.2013
University of Chicago physicists have succeeding in creating a vortex knot—a feat akin to tying a smoke ring into a knot. Linked and knotted vortex loops have existed in theory for more than a century, but creating them in the laboratory had previously eluded scientists.

Vortex knots should, in principle, be persistent, stable phenomena. "The unexpected thing is that they're not," said Dustin Kleckner, a postdoctoral scientist at UChicago's James Franck Institute. "They seem to break up in a particular way. They stretch themselves, which is a weird behavior."


A vortex loop begins to form a knot during a demonstration in the laboratory of William Irvine, professor in physics at the University of Chicago.

Credit: Robert Kozloff/University of Chicago

This behavior culminates in what the UChicago researchers call "reconnection events." In these events, the loops elongate, begin to circulate in opposite directions, move toward each other and collide (the reconnection). Parts of the vortices then annihilate other parts, changing their configuration from linked or knotted into one that is unlinked or unknotted.

Kleckner and William Irvine, assistant professor in physics, report their findings on the creation and dynamics of vortex rings in Nature Physics, published online Sunday, March 3. Their work relates to deep questions in a variety of physics subfields, including turbulence, plasma physics, ordinary fluids and the more exotic superfluids. Knotted structures are thought to occur in all these phenomena but are difficult or impossible to observe.

"We look at plasma physics and turbulence every day in the sun," Irvine said, yet such phenomena pose longstanding, unsolved scientific puzzles. But knots may offer a means of untangling the complicated behavior of the electrically charged gas in plasma flows, for example, and for understanding the energy transport of complex flows in regular fluids and superfluids.

Conservation of quantities like energy and momentum are among the most important principles in physics. In many systems, the degree of "knottedness" can be represented as a precise physical quantity that also is conjectured to be conserved. "If confirmed, this would deepen our understanding of the dynamics and connections between many disparate physical fields," Irvine said. "We don't know if its true or not, but I think we can finally test this in experiment. There's actually around 50 years of theory on this subject with no clean experiments."

Colliding smoke rings

Irvine became interested in knot physics as a postdoctoral scientist at New York University after watching a smoke-ring demonstration in Washington Square Park. He wondered if he could get colliding smoke rings to become tangled. After unsuccessfully trying to make them himself he learned that others had tried before and failed.

"At some point the enthusiasm wanes and you worry about whether there's a very good reason why nobody has ever done this," Irvine said. "But sometimes going into a new field with a little naivete can be helpful."

Seeing a video of dolphins blowing air-core vortex rings convinced Irvine of the feasibility of the feat. He tried again, with Kleckner's assistance, soon upon arrival at Chicago. "Before we built the lab we had this little prep room, and we started with a little water tank," Irvine said. They tried to generate rings that would collide and then connect with each other, but the effort "failed catastrophically," Irvine said.

The duo overcame their experimental difficulties by designing and fabricating various hydrofoils (wings used in water) on a 3-D printer. They tried approximately 30 different shapes before they successfully created the desired vortices. When accelerated in a water tank at more than 100 g, hydrofoils leave behind bubble-traced vortex loops, whose dynamics the researchers recorded with a high-speed camera.

"The bubbles are a great trick because they allow you to see the core of the vortex very clearly," Irvine said.

The collaborative intellectual spirit and shared resources of the James Franck Institute also proved critical. "We wouldn't have succeeded without this sort of atmosphere," he said.

Lord Kelvin's knots

The roots of Irvine's work date back to the days of Lord Kelvin, more than a century ago. Kelvin had seen a demonstration of a vortex ring by physicist Peter Tait, and was fascinated by their elegance and stability.

"This was at the time when nobody knew what atoms were and the aether was still in fashion," Irvine said. In Kelvin's day, physicists theorized that the universe was filled with a substance known as aether, which transmitted light waves across the vacuum of space much like air transmits sound through the atmosphere. Kelvin thus proposed that atoms were vortex rings and knots in the aether, where the different types of knots formed the building blocks for the periodic table of elements.

The idea that atoms were simply knots tied in the aether eventually failed. But it failed in such an interesting way, Irvine said, that it gave birth to the fruitful study of knotted systems in mathematics and physics.

In future research, Irvine and Kleckner hope to perform some of their experiments at larger scale to investigate whether size would lend greater stability to vortex rings. They also are investigating the fine scale features of the vortices and whether "knottedness" is, or can be, conserved in fine-scale twisting of the vortex loops. "This is not something we presently know," Kleckner said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>