Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Virtual Periscope” Sees Above-Surface/Airborne Objects From Underwater View

30.04.2014

Researchers modeled virtual periscope on astronomers’ technology used to counter blurring and distortion caused by layers of atmosphere when viewing stars

“Up periscope!” may become a submarine commander's outdated order, thanks to a team of Technion-Israel Institute of Technology researchers who have developed a new technology for viewing objects above the water's surface without a periscope poking its head above the waves.

The technology behind a submerged, “virtual periscope” will be introduced in a presentation at the IEEE International Conference on Computational Photography, held May 2-4, 2014 in Santa Clara, Calif. ( http://www.iccp14.org/ ])

Associate Professor Yoav Y. Schechner, of the Technion Department of Electrical Engineering, and colleagues, developed the virtual periscope called “Stella Maris” (Stellar Marine Refractive Imaging Sensor). The heart of the underwater imaging system is a camera, a pinhole array to admit light (a thin metal sheet with precise, laser-cut holes), a glass diffuser, and mirrors. Sunrays are projected through the pinholes to the diffuser, which is imaged by the camera, beside the distorted object of interest. The latter is then corrected for distortion.

“Raw images taken by a submerged camera are degraded by water-surface waves similarly to degradation of astronomical images by our atmosphere. We borrowed the concept from astronomers who use the Shack-Hartmann astronomical sensor on telescopes to counter blurring and distortion caused by layers of atmosphere,” explains Schechner. “Stella Maris is a novel approach to a virtual periscope as it passively measures water and waves by imaging the refracted sun.”

The unique technology gets around the inevitable distortion caused by the water-surface waves when using a submerged camera, according to Schechner, because of the sharp refractive differences between water and air, random waves at the interface present distortions that are worse than the distortion atmospheric turbulence creates for astronomers peering into space.

“When the water surface is wavy, sun-rays refract according to the waves and project onto the solar image plane,” explains Schechner. “With the pinhole array, we obtain an array of tiny solar images on the diffuser.” When all of the components work together, the Stella Maris system acts as both a wave sensor to estimate the water surface, and a viewing system to see the above surface image of interest through a computerized, “reconstructed” surface.

The Stella Maris virtual periscope is just the latest technology developed by the researchers, who have also found ways to exploit “underwater flicker,” i.e., random change of underwater lighting, caused by the water surface wave motion. Members in the Schechner Hybrid Imaging Lab (http://webee.technion.ac.il/~yoav/lab-and-group/) turned the tables on underwater flicker and used the natural rapid and random motion of the light beams to obtain three-dimensional mapping of the sea floor.

According to the developers, the virtual periscope may have potential uses in addition to submarines, where they could reduce the use of traditional periscopes that have been in use for more than a century. Submerged on the sea floor, Stella Maris could be useful for marine biology research where and when viewing and imaging both beneath and above the waves simultaneously is important. Stella Maris could, for example, monitor the habits of seabirds as they fly, then plunge into water and capture prey.

“There are many ways to advance the virtual periscope,” says Schechner, who adds that while the system requires sunlight, they are currently working on a way to gather enough light from moonlight or starlight to be able to use the system at night.

Also contributing to this research were current graduate student Marina Alterman and former graduate student Dr. Yohay Swirski (who is now working in industry). The research was conducted in Schechner's Hybrid Imaging Lab in the Technion Department of Electrical Engineering.

The Technion-Israel Institute of Technology is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel's renown as the world's “Start-Up Nation.” Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology. The Joan and Irwin Jacobs Technion-Cornell Innovation Institute is a vital component of Cornell NYC Tech, and a model for graduate applied science education that is expected to transform New York City's economy.

American Technion Society (ATS) donors provide critical support for the Technion - more than $1.9 billion since its inception in 1940. Based in New York City, the ATS and its network of chapters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.

Kevin Hattori | newswise
Further information:
http://www.ats.org

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>