Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent gamma-ray outbursts near supermassive black holes

22.05.2014

Where in powerful jets of distant active galaxies are outbursts of high energy gamma-ray emission produced?

A team led by Lars Fuhrmann from MPIfR Bonn, performed intensive, multi-frequency radio observations with some of the best single-dish radio telescopes in combination with NASA's Fermi Telescope, to study the place where the high energy outbursts occur.


An artist's view of the nuclear region of an active galaxy with a disk of accreting material (brown/yellow) and a powerful, collimated radio jet perpendicular t o the disk.

Credit: NASA JPL/CalTech


Telescopes utilized for the data acquisition in the radio and y-ray regime. Clockwise from upper left: Effelsberg 100m, APEX 12m, Fermi -ray observatory and IRAM 30m.

Credit: MPIfR/N. Junkes (100m), APEX-Team (12m), NASA E/PO, Sonoma State University, Aurore Simonnet (Fermi), MPIfR (30m).

For the first time a connection between outbursts of high energy gamma-ray emission and their counterparts at many radio frequencies has been established for a large sample of galaxies. Measuring delays in time between these events finally produced better constraints on the exact location where the gamma-ray outbursts take place.

Special types of distant active galaxies and their innermost central regions show extreme physical processes. In the vicinity of a spinning supermassive black hole (billions of times heavier than our Sun) an enormous amount of energy is released, often in the most energetic form of light: high energy gamma-ray photons at mega- or even gigaelectronvolt (MeV/GeV) energies. This energy output is produced by feeding the black hole from surrounding stars, gas and dust.

Matter is spiraling in onto the black hole and strong magnetic fields channel some of the infalling gas into two powerful, well collimated "jets" of plasma accelerating away from the center with velocities approaching the speed of light. Many of the connected physical processes are not understood in detail so far, for example the production of high-energy gamma-ray photons and their place of origin inside the jet, or the origin of strong outbursts of emission across the whole electromagnetic spectrum. New instruments and observing programs covering a large fraction of the whole energy spectrum nearly simultaneously allow new insights into the extreme physics of these objects to be obtained.

Using a combination of three of the world’s most advanced single-dish radio observatories, namely the Effelsberg 100-m, IRAM 30-m and APEX 12-m telescopes covering quasi-simultaneously 11 radio frequency bands (the so-called Fermi-GST AGN Multi-frequency Monitoring Alliance, F-GAMMA programme), the team of scientists was able to monitor the frequently occurring radio outbursts of about 60 powerful active galaxies over many years.

"Since the era of the EGRET instrument on the Compton Gamma-ray Observatory in the 1990s, it has been discussed whether outbursts of radio emission are physically connected to similar events occurring at gamma rays" says Anton Zensus, Director at the Max Planck Institute for Radio Astronomy (MPIfR) and Fermi Affiliated Scientist. "Now with the combination of F-GAMMA radio and Fermi gamma-ray long-term data, and thanks to special analysis techniques, we finally know it!"

In addition to radio data within the F-GAMMA programme, the research team used gamma-ray observations of NASA’s Fermi Gamma-ray Space Telescope (launched in 2008), and a new statistical method to add up many radio and gamma-ray events. "It was illuminating to see the statistical noise going down and the average correlation popping up" explains Stefan Larsson, from Stockholm University.

"This finally demonstrates that a significant connection exists, even when using different radio frequencies" he continues. The study furthermore shows that the radio outbursts arrived at the telescopes later in time than their gamma-ray counterparts, with mean delays between 10 and 80 days. "For the first time we see that the radio delays become smoothly smaller towards higher radio frequencies", adds Emmanouil Angelakis from MPIfR. "Towards higher frequencies we are looking deeper into the jet. The gamma-ray photons are thus coming from the innermost radio emitting jet regions."

Using the measured time delays the team was finally able to estimate distances of a few ten light years or less between the radio and gamma-ray outburst regions. "Based on our delay measurements we could estimate for one of the brightest gamma-ray emitting active galaxies in the sky, 3C 454.3, how far away from the supermassive black hole most of the gamma-ray photons must have been produced. We are talking about only a few light year distances – very close to the footpoint of the jet and the black hole itself!" proudly reports Lars Fuhrmann from MPIfR, the lead author of the paper. "This has serious implications for the physical processes producing the gamma-ray photons!" he adds. In the meantime the team is continuing to use the "Joint Eye" on the universe to collect more data and more events for detailed follow-up studies.

Original paper:

Detection of significant cm to sub-mm band radio and γ-ray correlated variability in Fermi bright blazars, L. Fuhrmann, S. Larsson, J. Chiang, E. Angelakis, J. A. Zensus, I. Nestoras, T. P. Krichbaum, H. Ungerechts, A. Sievers, V. Pavlidou, A. C. S. Readhead, W. Max-Moerbeck, and T. J. Pearson, 2014, MNRAS, 441, 1899-1909.
http://mnras.oxfordjournals.org/content/441/3/1899.abstract
http://arxiv.org/abs/1403.4170

Contact:

Dr. Lars Fuhrmann,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-424
E-mail: lfuhrmann@mpifr-bonn.mpg.de

Prof. Dr. J. Anton Zensus,
Director and Head of Research Group „Radio Astronomy / VLBI“
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-298
E-mail: azensus@mpifr-bonn.mpg.de

Dr. Emmanouil Angelakis,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-217
E-mail: eangelakis@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2014/5

Norbert Junkes | Max-Planck-Institut

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>