Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling nonlocal correlations in natural systems

12.04.2017

Nonlocal correlations are a quantum phenomenon that constitute a stronger form of correlations than quantum entanglement.

Researchers at MPQ, ICFO, University of Innsbruck and the Center for Theoretical Physics of the Polish Academy of Sciences have developed a new method to show that the low energy states of some physical spin Hamiltonians can exhibit these nonlocal correlations.


(from the original article): Parameter regions with different behaviour of the classical bound for an XXZ-like Hamiltonian with two parameters.

Graphic: MPQ, Theory Division

Classical correlations are part of our everyday experience. For instance, if one always puts on a pair of socks of the same colour and shape, looking at the colour or shape of one sock determines the colour or shape of the other one. Moreover, one can observe the colour and shape of one sock simultaneously, and these will tell us the colour and shape of the other one.

Entangled states, the paradigmatic form of quantum correlations, defy this basic principle: if the socks were entangled, observing the colour of one sock would allow us to predict the colour of the other, but if, at the same time, we would observe the shape, this would “disturb” the colour, which would become completely unpredictable. This weird “coordination” between particles is known as quantum entanglement and is one of the intrinsic features of the quantum world

Some entangled states show an even weirder form of correlations, namely nonlocal correlations. These violate two apparently reasonable principles, namely (1) that the properties of objects (like shape or colour) exist regardless of our knowledge of them, and (2) that information cannot propagate instantaneously.

While fascinating, these nonlocal correlations are very hard to characterize in systems composed of many particles. There are at least three reasons for that: First, the classical correlations are mathematically very complex to study; second, quantum many-body states are very complex to describe as well due to the exponential growth of their description; and, third, currently available experimental techniques are rather limited, and this constrains the measurements that can be performed in the laboratory. In order to explore the role of nonlocal correlations in many-body quantum systems, one thus has to address these three problems at the same time.

In the work just published in Physical Review X 7, 021005 (Published 10 April 2017), an international research team composed of scientists from Munich, Barcelona, Innsbruck and Warsaw have proposed a new simple test to study nonlocal correlations in quantum many-body systems. This has allowed them to study whether nonlocal correlations appear in natural systems, more precisely, as ground states of some spin Hamiltonians, such as electrons (described by their spin degree of freedom) in a system of one spatial dimension. By combining numerical and analytical results, they have shown that some Hamiltonians that have been studied by physicists for some decades have a state of minimal energy which can display nonlocal correlations. This sheds some light onto this fascinating problem, hopefully sparking further progress in our understanding of nonlocality in quantum many-body systems.

Original Publication:
J. Tura, G. De las Cuevas, R. Augusiak, M. Lewenstein, A. Acín, and J. I. Cirac
Energy as a detector of nonlocality of many-body spin systems
PhysRev X 7, 021005 – Published 10 April 2017

Contact:

Dr. Jordi Tura i Brugués
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -346
E-mail: jordi.tura@mpq.mpg.de

Dr. Gemma de las Cuevas
Institute for Theoretical Physics
Universität Innsbruck, Austria
Phone: +43 512 507 52247
E-mail: Gemma.DelasCuevas@uibk.ac.at

Prof. Dr. J. Ignacio Cirac
Honorary Professor TU Munich and
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 705
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>