Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy

19.03.2020

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

For exploring the nanoscale far beyond the optical resolution limit, tip-enhanced Raman spectroscopy (TERS) is widely recognized as an essential yet still emergent technique. Using this marker-free spectroscopic method scientists gain insights into the structural and chemical composition of surfaces with nanoscale resolution, which are not accessible with other methods.


On the left side a schematic view of a tip-enhanced Raman scattering (TERS) experiment is shown. A metallized AFM probe is brought in close proximity to a specimen surface, a laser is focused on the tip-sample interface. Such a setup allows to obtain vibrational spectra (Raman spectra) of an extremely small region, as small as a single molecule or even a single bond. An example of so-called Stokes and Anti-Stokes regions of spectra that are obtained by such an experiment is shown on the upper right column. A thorough assessment of the spectra, as shown by the authors, allows to obtain the structure sensitive Raman spectra and synchronously the specific plasmon resonance properties of the particular tip and the respective temperature. This way tip-induced changes during a measurement are revealed consequently improving the comprehension of the experiment significantly.

Credit by Marie Richard-Lacroix and Volker Deckert

Examples where such nanoscale resolution spectroscopies are crucial are structure investigations, of novel materials (e.g. diamond layers, 2D materials etc.), of protein aggregates, discussed as triggers for diseases like diabetes type II or Alzheimer's, or even of catalytical reactions at work.

However, scientists' lack of comprehension of crucial parameters of the actual probe still limits the potential of TERS as a user-friendly analytical tool. Until now scientists have not been able to unravel the most fundamentally relevant experimental parameters as the tip's surface plasmon resonance, heating due to near-field temperature rise, and the link towards spatial resolution.

In a new paper in "Light: Science & Application", a research team from Jena, Germany now presents the first accessible method to gain unprecedented insights into the plasmonic activity of a single nanoparticle during a typical TERS experiment.

Prof. Volker Deckert from the Leibniz Institute of Photonic Technology, Jena, and Dr. Marie Richard-Lacroix from the Friedrich Schiller University Jena propose a straightforward and purely experimental method to assess the plasmon resonance and near-field temperature experienced exclusively by the molecules directly contributing to the TERS signal.

Using standard TERS experimental equipment, the scientists evaluate the detailed near-field optical response, both at the molecular level and as a function of time by probing simultaneously the Stokes and anti-Stokes spectral intensities. This enables them to characterize the optical properties of each individual TERS tip during the measurement.

"The proposed method could be a major step to improve the usability of TERS in day-to-day operation", Prof. Deckert explains. "The actual conditions to which the molecules are submitted from one experiment to the next can now be investigated and optimized directly, in real-time, and at the sample scale." This is especially relevant when it comes to examining biological samples like e.g. proteins which cannot tolerate high temperatures.

"To the best of our knowledge, no other accessible methodology opens up access to such a wealth of information on the plasmonic activity during a typical TERS experiment", Dr. Richard-Lacroix says.

"We believe that this methodology will contribute to improve the accuracy of theoretical models and facilitate any experimental plasmonic investigation and the application of TERS in the field of nanoscale thermometry", the scientists foresee.

Marie Richard-Lacroix | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41377-020-0260-9

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>