Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH scientists help provide first-ever views of elusive energy explosion

16.11.2018

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can have--sparking auroras and possibly wreaking havoc on power grids in the case of extremely large events--but they haven't completely understood the details.


Artist depiction of the MMS spacecraft that provided the first view of magnetic reconnection.

Credit: NASA/GSFC

In a study published in the journal Science, the scientists outline the first views of the critical details of how this energy conversion process works in the Earth's magnetotail.

"This was a remarkable event," said Roy Torbert of the Space Science Center at UNH and deputy principal investigator for NASA's Magnetospheric Multiscale mission, or MMS.

"We have long known that it occurs in two types of regimes: asymmetric and symmetric but this is the first time we have seen a symmetric process."

Magnetic reconnection occurs around Earth every day due to magnetic field lines twisting and reconnecting. It happens in different ways in different places, with different effects. Particles in highly ionized gases, called plasmas, can be converted and cause a single powerful explosion, just a fraction of a second long, that can lead to strong streams of electrons flying away at supersonic speeds.

The view, which was detected as part of the scientists' work on the MMS mission, had enough resolution to reveal its differences from other reconnection regimes around the planet like the asymmetric process found in the magnetopause around Earth which is closer to the sun.

"This is important because the more we know and understand about these reconnections," said Torbert, "the more we can prepare for extreme events that are possible from reconnections around the Earth or anywhere in the universe."

Magnetic reconnection also happens on the sun and across the universe--in all cases forcefully shooting out particles and driving much of the change we see in dynamic space environments--so learning about it around Earth also helps us understand reconnection in other places in the universe which cannot be reached by spacecraft.

The more we understand about different types of magnetic reconnection, the more we can piece together what such explosions might look like elsewhere.

For the first reported asymmetrical event on October 16, 2015, and now this symmetrical event on July 11, 2017, NASA's MMS mission made history by flying through magnetic reconnection events near the Earth.

The four MMS spacecrafts launched from a single rocket were only inside the events for a few seconds, but the instruments which UNH researchers helped to develop were able to gather data at an unprecedented speed of one hundred times faster than ever before.

As a result, for the first time, scientists could track the way the magnetic fields changed, new electric fields presented, as well as the speeds and direction of the various charged particles.

###

This work was funded by the National Aeronautics and Space Administration, or NASA.

The University of New Hampshire is a flagship research university that inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of study.

UNH's research portfolio includes partnerships with NASA, NOAA, NSF and NIH, receiving more than $100 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

PHOTOS AND GIFs AVAILABLE FOR DOWNLOAD

https://www.unh.edu/unhtoday/sites/default/files/media/artist_depiction_of_the_mms_spacecraft_0.jpg

Artist depiction of the MMS spacecraft that provided the first view of magnetic reconnection.

Credit: NASA/GSFC

MMS Watches Reconnection (GIF)

https://www.unh.edu/unhtoday/sites/default/files/media/mms-watches-reconnection.gif

In its second phase, NASA's Magnetospheric Multiscale Mission (MMS) is watching magnetic reconnection in action behind the Earth, as shown here by the tangled blue and red magnetic field lines.

Credit: Patricia Reiff/NASA Goddard/Joy Ng

Assymetrical Reconnection (GIF)

https://www.unh.edu/unhtoday/sites/default/files/media/assymetrical-reconnection.gif

On Earths dayside, magnetic reconnection is asymmetric -- meaning it flings particles, like ions and electrons, unequally in different directions. In this simulation, particles are seen primarily moving upwards away from the site of reconnection along the black magnetic field lines.

Credit: Paul Cassak/NASA Goddard/Joy Ng

Symmetrical Reconnection (GIF)

https://www.unh.edu/unhtoday/sites/default/files/media/symmetrical-reconnection.gif

Behind Earth, away from the Moon, magnetic reconnection occurs symmetrically. This simulation shows particles traveling away from the site of reconnection equally in both directions, confined by the red magnetic field lines.

Credit: Michael Hesse/NASA Goddard/Joy Ng

Media Contact

Robbin Ray
robbin.ray@unh.edu
603-862-4864

 @unhresearchnews

http://www.unh.edu/news 

Robbin Ray | EurekAlert!

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Biophysicists reveal how optogenetic tool works

29.05.2020 | Life Sciences

Convenient location of a near-threshold proton-emitting resonance in 11B

29.05.2020 | Physics and Astronomy

Mapping immune cells in brain tumors

29.05.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>