Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-Sensitive Electrical Biosensor Unlocks Potential for Instant Diagnostic Devices

17.04.2012
Researchers at UC Santa Barbara propose Tunnel-FET based biosensor 10,000 times more sensitive than conventional FET-based sensors

A new quantum mechanical-based biosensor designed by a team at University of California, Santa Barbara offers tremendous potential for detecting biomolecules at ultra-low concentrations, from instant point-of-care disease diagnostics, to detection of trace substances for forensics and security.


Schematic of a Tunnel-FET biosensor proposed by UCSB researchers and its band diagram illustrating band-to-band-tunneling triggered by biomolecule conjugation. Credit: Peter Allen, UCSB

Kaustav Banerjee, director of the Nanoelectronics Research Lab and professor of Electrical and Computer Engineering at UCSB, and PhD student Deblina Sarkar have proposed a methodology for beating the fundamental limits of a conventional Field-Effect-Transistor (FET) by designing a Tunnel-FET (T-FET) sensor that is faster and four orders of magnitude more sensitive. The details of their study appeared in the April 2, 2012 issue of the journal Applied Physics Letters.

“This study establishes the foundation for a new generation of ultra-sensitive biosensors that expand opportunities for detection of biomolecules at extremely low concentrations,” said Samir Mitragotri, professor of Chemical Engineering and director of the Center for Bioengineering at UCSB. “Detection and diagnostics are a key area of bioengineering research at UCSB and this study represents an excellent example of UCSB's multi-faceted competencies in this exciting field.”

Biosensors based on conventional FETs have been gaining momentum as a viable technology for the medical, forensic, and security industries since they are cost-effective compared to optical detection procedures. Such biosensors allow for scalability and label-free detection of biomolecules – removing the step and expense of labeling target molecules with fluorescent dye.

The principle behind any FET-based biosensor is similar to the FETs used in digital circuit applications, except that the physical gate is removed and the work of the gate is carried out by charged versions of the biomolecules it intends to detect. For immobilizing these biomolecules, the dielectric surface enclosing the semiconductor is coated with specific receptors, which can bind to the target biomolecules – a process called conjugation.

“The thermionic emission current injection mechanism of conventional FET based biosensors puts fundamental limitations on their maximum sensitivity and minimum detection time,” said Banerjee, who conceived the idea in 2009 while studying the design of tunnel-FETs for ultra energy-efficient integrated electronics.

"We overcome these fundamental limitations by making Quantum Physics join hands with Biology" explained Sarkar, the lead author of the paper. "The key concept behind our device is a current injection mechanism that leverages biomolecule conjugation to bend the energy bands in the channel region, leading to the quantum-mechanical phenomenon of band-to-band tunneling. The result is an abrupt increase in current which is instrumental in increasing the sensitivity and reducing the response time of the proposed sensor.”

“The abruptness of current increase in an electrical switch is quantified by a parameter called subthreshold swing and the sensitivity of any FET based biosensor increases exponentially as the subthreshold swing decreases. Thus, similar devices such as Impact-ionization- or Nano-electromechanical-FETs are promising for biosensing applications,” explained Banerjee. “But since theT-FETs can be easily integrated in the widely available silicon-based semiconductor technology, they can be mass produced in a cost effective manner.”

According to the researchers, their T-FET biosensor is expected to have tremendous impact on research in genomics and proteomics, as well as pharmaceutical, clinical and forensic applications – including the growing market of in-vitro and in-vivo diagnostics. Banerjee and Sarkar have filed a patent disclosure for their technology, which the researchers anticipate can be ready for the marketplace in as few as two years.

The Nanoelectronics Research Lab (NRL) is affiliated with the UCSB College of Engineering. Professor Kaustav Banerjee is the director of the NRL and also affiliated with the California NanoSystems Institute and the Institute for Energy Efficiency at UCSB. Banerjee is a Fellow of IEEE and has been recently honored with the Humboldt Foundation’s Bessel Research Award. Deblina Sarkar is a PhD candidate in the Electrical and Computer Engineering department and one of three students worldwide to receive an IEEE Electron Devices Society PhD Fellowship in 2011.

Paper source: Applied Physics Letters

Media Contact
Melissa Van De Werfhorst
melissa@engineering.ucsb.edu

Melissa Van De Werfhorst | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>