Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-hot gas around remnants of sun-like stars

08.11.2018

Solving a decades-old mystery, an international team of astronomers have discovered an extremely hot magnetosphere around a white dwarf, a remnant of a star like our Sun. The work was led by Dr Nicole Reindl, Research Fellow of the Royal Commission 1851, based at the University of Leicester, and is published today (7 November) in the journal Monthly Notices of the Royal Astronomical Society.

White dwarfs are the final stage in the lives of stars like our Sun. At the end of their lives, these stars eject their outer atmospheres, leaving behind a hot, compact and dense core that cools over billions of years. The temperature on their surfaces is typically around 100,000 degrees Celsius (in comparison the surface of the Sun is 5500 degrees).


This is an artist's impression of the hot white dwarf GALEXJ014636.8+323615 (white) and its ultra-hot circumstellar magnetosphere (purple) trapped with the magnetic field (green).

Credit: N. Reindl

Some white dwarfs though challenge scientists, as they show evidence for highly ionised metals. In astronomy 'metals' describe every element heavier than helium, and high ionisation here means that all but one of the outer electrons usually in their atoms have been stripped away. That process needs a temperature of 1 million degrees Celsius, so far higher than the surface of even the hottest white dwarf stars.

Reindl's team used the 3.5-metre Calar Alto telescope in Spain to discover and observe a white dwarf in the direction of the constellation of Triangulum, catalogued as GALEXJ014636.8+323615, located 1200 light years from the Sun. Analysing the light from the white dwarf with a technique known as spectroscopy, where the light is dispersed into its constituent colours, revealed the signatures of highly ionised metals. Intriguingly these varied over a period of six hours - the same time it takes for the white dwarf to rotate.

Reindl and her team conclude that the magnetic field around the star - the magnetosphere - traps material flowing from its surface. Shocks within the magnetosphere heat the material dramatically, stripping almost all the electrons from the metal atoms.

"It's like a doughnut made up of ultra-hot material that surrounds the already very hot star" explains Reindl.

"The axis of the magnetic field of the white dwarf is tilted from its rotational axis. This means that the amount of shock-heated material we see varies as the star rotates.

'After decades of finding more and more of these obscure stars without having a clue where these highly ionised metals come from", she continues, "our shock-heated magnetosphere model finally explains their origin."

Magnetospheres are found around other types of stars, but this is the first report of one around a white dwarf. The discovery might have far-reaching consequences. "We simply didn't take this into account", admits Reindl. "Ignoring their magnetospheres could mean measurements of other basic properties of white dwarfs are wrong, like their temperatures and masses."

It may be that a quarter of white dwarfs go through a stage of trapping and super-heating material. Reindl and her team now plan to model them in detail and to extend their research by studying more of these fascinating objects.

###

Media contacts

Dr Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7292 3979
Mob: +44 (0)7802 877699
press@ras.ac.uk

Dr Morgan Hollis
Royal Astronomical Society
Tel: +44 (0)20 7734 3307 x118
Mob: +44 (0)7802 877700
press@ras.ac.uk

Science contacts

Dr Nicole Reindl
Research fellow of the Royal Commission 1851
University of Leicester
Mob: +44 (0)74 6241 9335
nr152@le.ac.uk
http://www.star.le.ac.uk/~nr152/

Images and captions

https://ras.ac.uk/sites/default/files/2018-11/J0146_PR100dpi.png

Artist's impression of the hot white dwarf GALEXJ014636.8+323615 (white) and its ultra-hot circumstellar magnetosphere (purple) trapped with the magnetic field (green). Credit: N. Reindl.

https://ras.ac.uk/sites/default/files/2018-11/J0146_sdss.png

Colour image of the white dwarf GALEXJ014636.8+323615 from the Sloan Digital Sky Survey. Credit: Sloan Digital Sky Survey.

Further information

The new work appears in "Unravelling the Baffling Mystery of the Ultra-hot Wind Phenomenon in White Dwarfs", N. Reindl, M. Bainbridge, N. Przybilla, S. Geier, M. Prvák, J. Krticka, R. H. Østensen, J. Telting, K. Werner, Monthly Notices of the Royal Astronomical Society, Oxford University Press, in press. After the embargo expires a copy of the paper will be available from https://academic.oup.com/mnrasl/article-lookup/doi/10.1093/mnrasl/sly191

Notes for editors

The Royal Commission for the Exhibition of 1851 awards grants and fellowships in support of science and industry to the value of around £4m a year. First established in 1850 to stage the Great Exhibition, the Commission initially invested the Exhibition's profit by purchasing the land for development of the South Kensington cultural estate of museums, colleges and the Albert Hall.

Details of the 1851 Royal Commission's awards are on its website: http://www.royalcommission1851.org.uk

The Royal Astronomical Society (RAS, http://www.ras.ac.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

Twitter: https://twitter.com/royalastrosoc

Facebook: https://facebook.com/royalastrosoc

Instagram: https://www.instagram.com/royalastrosoc/

YouTube: https://www.youtube.com/user/RoyalAstroSoc/feed

Media Contact

Robert Massey
rmassey@ras.ac.uk
44-780-287-7699

 @royalastrosoc

http://www.ras.org.uk/ras 

Robert Massey | EurekAlert!
Further information:
http://dx.doi.org/10.1093/mnrasl/sly191

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>