Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF leads world in reconfigurable supercomputing

16.02.2011
University of Florida researchers say their supercomputer, named Novo-G, is the world’s fastest reconfigurable supercomputer and is able to perform some important science applications faster than the Chinese supercomputer touted as the world’s most powerful.

In November, the TOP500 list of the world’s most powerful supercomputers, for the first time ever, named the Chinese Tianhe-1A system at the National Computer Center in Tainjin, China as No. 1.

In his state of the union speech, President Barack Obama noted, “Just recently, China became home of the world’s largest solar research facility, and the world’s fastest computer.”

But that list does not include reconfigurable supercomputers such as Novo-G, built and developed at the University of Florida, said Alan George, professor of electrical and computer engineering, and director of the National Science Foundation’s Center for High-Performance Reconfigurable Computing, known as CHREC.

“Novo-G is believed to be the most powerful reconfigurable machine on the planet and, for some applications, it is the most powerful computer of any kind on the planet,” George said.

“It is very difficult to accurately rank supercomputers because it depends upon what you want them to do,” George said, adding that the TOP500 list ranks supercomputers by their performance on a few basic routines in linear algebra using 64-bit, floating-point arithmetic.

However, a significant number of the most important applications in the world do not adhere to that standard, including a growing list of vital applications in health and life sciences, signal and image processing, financial science, and more under study with Novo-G at Florida.

Most of the world’s computers, from smart-phones to laptops to Tianhe-1A, feature microprocessors with fixed-logic hardware structures. All software applications for these systems must conform to these fixed structures, which can lead to a significant loss in speed and increase in energy consumption.

By contrast, with reconfigurable machines, a relatively new and highly innovative form of computing, the architecture can adapt to match the unique needs of each application, which can lead to much faster speed and less wasted energy due to adaptive hardware customization.

Novo-G uses 192 reconfigurable processors and “can rival the speed of the world’s largest supercomputers at a tiny fraction of their cost, size, power, and cooling,” the researchers noted in a new article on Novo-G published in the January-February edition of the IEEE Computing in Science and Engineering magazine.

Conventional supercomputers, some the size of a large building, can consume up to millions of watts of electrical power, generating massive amounts of heat, whereas Novo-G is about the size of two home refrigerators and consumes less than 8,000 watts.

Later this year, researchers will double the reconfigurable capacity of Novo-G, an upgrade only requiring a modest increase in size, power, and cooling, unlike upgrades with conventional supercomputers.

In their article, the researchers discuss Novo-G and its obvious advantages for use in certain applications such as genome research, cancer diagnosis, plant science, and the ability to analyze large data sets.

Herman Lam, an electrical and computer engineering professor and co-investigator on Novo-G, said some vital science applications that can take months or years to run on a personal computer can run in minutes or hours on the Novo-G, such as applications for DNA sequence alignment at UF’s Interdisciplinary Center for Biotechnology Research.

CHREC is comprised of research sites at four universities including Florida, Brigham Young, George Washington and Virginia Tech. In addition, there are more than 30 partners in CHREC, such as the U.S. Air Force, Army, and Navy, NASA, National Security Agency, Boeing, Honeywell, Lockheed Martin, Monsanto, Northrop Grumman, and the Los Alamos, Oak Ridge and Sandia National Labs.

Writer
Ron Word, rword@ufl.edu, 352-392-0186
Source
Herman Lam, hlam@ufl.edu, 352-392-2689
Source
Alan George, ageorge@ufl.edu, 352-392-5225

Herman Lam | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

nachricht UT-ORNL team makes first particle accelerator beam measurement in six dimensions
13.08.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>