Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning loss to gain: Cutting power could dramatically boost laser output

27.10.2014

Lasers – devices that deliver beams of highly organized light – are so deeply integrated into modern technology that their basic operations would seem well understood. CD players, medical diagnostics and military surveillance all depend on lasers.

Re-examining longstanding beliefs about the physics of these devices, Princeton engineers have now shown that carefully restricting the delivery of power to certain areas within a laser could boost its output by many orders of magnitude. The finding, published Oct. 26 in the journal Nature Photonics, could allow far more sensitive and energy-efficient lasers, as well as potentially more control over the frequencies and spatial pattern of light emission.


Engineers at Princeton found that by carefully shaping the area to which energy is delivered within a laser can dramatically improve the laser's performance. The researchers developed a mathematical approach to optimizing the pattern of energy delivery to achieve a desired outcome. In the case shown, pumping energy into a diamond shape produces powerful directional emission of light from the laser.

Credit: Omer Malik, Tureci Group, Princeton University

"It's as though you are using loss to your advantage," said graduate student Omer Malik, an author of the study along with Li Ge, now an assistant professor at the City University of New York, and Hakan Tureci, assistant professor of electrical engineering at Princeton.

The researchers said that restricting the delivery of power causes much of the physical space within a laser to absorb rather than produce light. In exchange, however, the optimally efficient portion of the laser is freed from competition with less efficient portions and shines forth far more brightly than previous estimates had suggested.

... more about:
»Princeton »delivery »lasers »spatial »studies »wavelength

The results, based on mathematical calculations and computer simulations, still need to be verified in experiments with actual lasers, but the researchers said it represents a new understanding of the fundamental processes that govern how lasers produce light.

"Distributing gain and loss within the material is a higher level of design – a new tool – that had not been used very systematically until now," Tureci said.

The heart of a laser is a material that emits light when energy is supplied to it. When a low level of energy is added, the light is "incoherent," essentially meaning that it contains a mix of wavelengths (or colors). As more energy is added, the material suddenly reaches a "lasing" threshold when it emits coherent light of a particular wavelength.

The entire surface of the material does not emit laser light; rather, if the material is arranged as a disc, for example, the light might come from a ring close to the edge. As even more energy is added, more patterns emerge – for example a ring closer to the center might reach the laser threshold. These patterns – called modes – begin to interact and sap energy from each other. Because of this competition, subsequent modes requiring higher energy may never reach their lasing thresholds. However, Tureci's research group found that some of these higher threshold modes were potentially far more efficient than the earlier ones if they could just be allowed to function without competition.

The researchers showed this selection could be accomplished by directing current only to the physical location where the desired mode originates. In particular, they showed how to calculate exactly how beneficial such targeting would be – and the answer was much more than expected.

Previous studies had looked at applying electric current only to the part of the laser that first reaches threshold, which succeeded in lowering the overall amount of power required to get that the laser to turn on. However, these studies did not consider the full range of modes, nor provide a way to calculate how brightness and efficiency could be controlled by targeting the delivery of current.

Instead of looking at just the first modes, Tureci's team examined dozens of possible modes and found ones that were optimally efficient. In one simulation, the most effective mode was preceded by 29 other less efficient modes that could turn on first and monopolize the pump energy. The researchers showed that applying electric current only to the pattern associated with this mode would cause it to light up first, free of competition. Targeting these higher order modes produced improvements of efficiency ranging from 100-fold to 10,000-fold, depending on the size, shape, and material of the cavity.

"We were surprised when we ran the actual numbers to see how much improvement we could get," Tureci said.

Previously, scientists designing lasers had two main ways to influence the performance: choosing the basic material that emits the light and designing the physical shape of the device – or cavity – that contains the material. The new paper now demonstrates a third approach: careful engineering of gain and loss regions within the laser.

Once a laser has been built with the fine-grained electrical connections that allow this targeting, then its performance can be controlled "on the fly," Tureci said. "Not just during fabrication."

Overall, the mathematical framework established by the researchers allows researchers to understand the full impact of one mode within the laser sapping energy from another – an effect known as "spatial hole burning." Disentangling these interactions would allow the selection of just one mode, or perhaps small number of different modes, that operate most efficiently, the researchers said.

If born out in actual lasers, the results could lead to laser devices becoming more portable. A medical diagnostic device or a bomb-detecting sensor that would have required a wall outlet, might be able to function with just batteries, Tureci said.

Tureci said the technology needed to target the delivery of power within a laser is entirely feasible for many common lasers. Just how fine the targeting needs to be depends on the wavelength of light being produced. For typical lasers described in their study, the power would need to be delivered to a space on the scale or micrometers, or thousandths of a millimeter.

Funding for the research came from the National Science Foundation through the Mid-Infrared Technologies for Health and the Environment center based at Princeton. Additional funding came from the Defense Advanced Research Projects Agency.

Steven Schultz | Eurek Alert!
Further information:
http://www.princeton.edu

Further reports about: Princeton delivery lasers spatial studies wavelength

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>