Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tune your radio: galaxies sing while forming stars


A team of astronomers led by Fatemeh Tabatabaei from the Instituto de Astrofisica de Canarias (IAC), including scientists from two Max Planck institutes (MPIfR, Bonn and MPIA, Heidelberg), has measured the radio emission for a large sample of galaxies with the Effelsberg 100-m radio telescope at different wavelengths. These galaxies were selected from the KINGFISH sample previously observed in the infrared with the Herschel satellite. This allows for the first time a comparative study of a total of 52 spiral galaxies. A reliable method could be established to determine the star formation rate exclusively from radio data without including other spectral regimes.

Almost all the light we see in the universe comes from stars which form inside dense clouds of gas in the interstellar medium of galaxies. The rate at which they form (referred to as star formation rate) depends on the reserves of gas and its physical properties like density, temperature, and magnetic field strength. To understand how star formation works, measuring the star formation rate is a key task.

The radio observations were based on the KINGFISH sample of galaxies. The compilation shows composite infrared images of these galaxies created from Spitzer and Herschel observations.

Maud Galametz

Spiral Galaxy NGC 4725. Contour lines of radio continuum emission at 3 cm wavelengths, observed with the Effelsberg 100-m radio telescope, overlayed onto an optical image of the galaxy.

Ancor Damas-Segovia (Radiokarte & kombiniertes Bild), Martin Pugh/ (optisches Bild)

In order to derive the star formation rates, a variety of observations at different wavelengths had been undertaken until now, each with its advantages and disadvantages. The tracers used in the visible and the ultraviolet can be partly absorbed by interstellar dust. This led to the use of hybrid tracers, which combine two or more different wavelength ranges, among them the infrared, which can help to correct for the dust absorption. However, other emissions which are not related to the formation of massive stars can intervene and lead to confusion.

Now, an international research team made a detailed analysis of the spectral energy distribution of a subsample of the KINGFISH galaxies (Fig. 1). The scientists determined for the first time the emitted radio energy which can be used as a tracer to calculate their star formation rates.

“We have used the radio emission at intermediate frequencies between 1 and 10 GHz because a tight correlation between the radio and the infrared emission was detected in previous studies, covering a total range of more than four orders of magnitude,” says Fatemeh Tabatabaei from the IAC (La Laguna, Tenerife), the leading author of the study. In order to improve this relation, more precise studies were needed to understand the energy sources and how radio emission from galaxies is produced.

“We decided within the research group to make studies of galaxies from the KINGFISH sample at a series of radio wavelengths”, recalls Eva Schinnerer from the Max-Planck-Institut für Astronomie (MPIA) in Heidelberg, Germany. The final sample consists of 52 galaxies with very diverse properties.

“As a single dish, the 100-m Effelsberg telescope with its high sensitivity is the ideal instrument to receive reliable radio fluxes of weak extended objects like galaxies”, explains Marita Krause from the Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn, Germany, who was in charge of the radio observations of those galaxies with the Effelsberg radio telescope. “We named it the KINGFISHER project, meaning KINGFISH galaxies Emitting in Radio.” Fig. 2 shows the radio emission of one galaxy from the sample (NGC 4725).

The results of this project, published today in The Astrophysical Journal, show that the radio emission over the frequency range used is an ideal tracer for calculating the star formation rate, for several reasons. Firstly, the interstellar dust does not attenuate or absorb radiation at this wavelength; secondly, it is emitted by massive stars during several phases of their formation, from young stellar objects to HII regions (zones of ionized gas) and supernova remnants, and finally, there is no need to combine it with any other tracer. For these reasons, measurements in the chosen range are a more rigorous way to measure the formation rate of massive stars than the tracers traditionally used.

“Now we can apply this method to many more galaxies, using the Effelsberg 100-m telescope”, concludes Rainer Beck from MPIfR, also a co-author of the study.

The research team comprises F.S. Tabatabaei, E. Schinnerer, M. Krause, G. Dumas, S. Meidt, A. Damas-Segovia, R. Beck, E.J. Murphy, D.D. Mulcahy, B. Groves, A. Bolatto, D. Dale, M. Galametz, K. Sandstrom, M. Boquien, D. Calzetti, R.C. Kennicutt, L.K. Hunt, I. de Looze and E.W. Pellegrini. Co-authors from MPIfR are Marita Krause, Ancor Damas-Segovia and Rainer Beck.

Fatemeh Tabatabaei started to investigate the radio and infrared emission of galaxies as part of her PhD thesis at MPIfR, followed by postdoc positions at MPIfR and MPIA. At present she is a researcher at the Instituto de Astrofisica de Canarias (IAC), La Laguna.

KINGFISH (“Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel”) is a survey of 61 galaxies in the Nearby Universe. KINGFISHER (“KINGFISH galaxies Emitting in Radio”) provides a subsample of these galaxies north of -21 degrees declination. For 17 of these galaxies radio data from the Effelsberg 100-m radio telescope at different frequencies did already exist (see “Atlas of Galaxies” web page), 35 galaxies were newly observed with the Effelsberg telescope. Both data sets with a total of 52 galaxies were used for the present study.

Original Paper:

The radio spectral energy distribution and star formation rate calibration in galaxies, F. S. Tabatabaei et al., 2017, The Astrophysical Journal (February 21, 2017).
arXiv Preprint-Server:

Press Release of the Max Planck Institut for Astronomy (MPIA) Heidelberg, Germany:
Press Release of Instituto de Astrofisica de Canarias (IAC), La Laguna, Spain:

Local Contact:

Dr. Marita Krause,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-312

Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525 323

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399

Weitere Informationen:

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>