Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The measurements of the expansion of the universe don't add up

19.11.2019

The mystery of the Hubble constant

Physicists use two types of measurements to calculate the expansion rate of the universe, but their results do not coincide, which may make it necessary to touch up the cosmological model. "It's like trying to thread a cosmic needle," explains researcher Licia Verde of the University of Barcelona, co-author of an article on the implications of this problem.


Solving the discordant data on the expansion rate of the universe is like trying to thread a 'cosmic needle', where its hole is the H0 value measured today and the thread is brought by the model from the furthest Universe we can observe: the cosmic microwave background.

NASA/JPL-Caltetch/ESA-Planck Collaboration/SINC

More than a hundred scientists met this summer at the Kavli Institute for Theoretical Physics at the University of California (USA) to try to clarify what is happening with the discordant data on the expansion rate of the universe, an issue that affects the very origin, evolution and fate of our cosmos. Their conclusions have been published in Nature Astronomy journal.

"The problem lies in the Hubble constant (H0), a parameter which value -it is actually not a constant because it changes with time- indicates how fast the Universe is currently expanding," points out cosmologist Licia Verde, an ICREA researcher at the Institute of Cosmos Sciences of the University of Barcelona (ICC-UB) and the main author of the article.

"There are different ways of measuring this quantity," she explains, "but they can be divided into two major classes: those relying on the Late Universe (the closest to us in space and time) and those based on the Early Universe, and they do not give exactly the same result."

A classic example of measurements in the late universe are those provided by the regular pulsations of cepheid stars, which the astronomer Henrietta Swan Leavitt already observed a century ago and which helped Edwin Hubble calculate distances between galaxies and prove in 1929 that the Universe is expanding.

The current analysis of the variable brightness of cepheids with space telescopes such as the Hubble, along with other direct observations of objects in our cosmic environment and more distant supernovae, indicate that the H0 value is approximately 73.9 kilometres per second per megaparsec (an astronomical unit equivalent to about 3.26 million light years).

However, measurements based on the early Universe provide an average H0 value of 67.4 km/s/Mpc. These other records, obtained with data from the European Space Agency's Planck Satellite and other instruments, are obtained indirectly on the basis of the success of the standard cosmological model (Lambda-CDM model), which proposes a Universe made up of 5 % atoms or ordinary matter, 27 % dark matter (made up of particles, as yet detected, that provide additional gravitational attraction so that galaxies can form and clusters of galaxies are held together) and 68 % dark energy, which is responsible for accelerating the expansion of the Universe.

"In particular, these measurements of the primordial Universe focus on the farthest light that can be observed: the cosmic microwave background, produced when the Universe was only 380,000 years old, in the so-called recombination era (where protons recombined with electrons to form atoms)," says Licia Verde.

The researcher highlights a relevant fact: "There are very different and independent ways (with totally different instruments and scientific tools) to measure the H0 on the basis of the early Universe, and the same goes for the late Universe. What is interesting is that all the measurements of one type are in mutual agreement with one another, at an exquisite precision of 1 or 2 %, as are those of the other type, with the same great precision; but when we compare the measurements of one class with those of the other, the discrepancy arises."

"It looks like a small difference, only 7%, but it is significant considering that we are talking about precisions of 1 or 2% in the value of the Hubble constant," as emphasised by Licia Verde, who jokes: "It is like trying to thread a 'cosmic needle' where its hole is the H0 value measured today and the thread is brought by the model from the furthest Universe we can observe: the cosmic microwave background."

In addition, she points out some of the consequences of the discrepancy: "The lower the H0 is, the older the Universe is. Its current age is calculated at about 13.8 billion years considering that the Hubble constant is 67 or 68 km/s/Mpc; but if its value were 74 km/s/Mpc, our universe would be younger: it would be approximately 12.8 billion years old."

Modifying the model in the early Universe

The authors point out in their study that this anomaly does not seem to depend on the instrument or method used for measuring, or on human equipment or sources. "If there are no errors in the data or measurements, could it be a problem with the model?" the researcher asks.

"After all, the H0 values of the primordial Universe class are based on the standard cosmological model, which is very well established, very successful, but which we can try to change a little to solve the discrepancy," says the expert. "However, we cannot tamper with the characteristics of the model that work very well".

If the data continue to confirm the problem, theoretical physicists seem to agree that the most promising route for solving it is to modify the model just before the light observed of the cosmic microwave background was formed, i.e. just before recombination (in which there was already 63 % dark matter, 15 % photons, 10 % neutrinos and 12 % atoms). One of the ideas proposed is that, shortly after the Big Bang, an intense episode of dark energy could have occurred that expanded the Universe faster than previously calculated.

"Although it is still highly speculative, with this fine-tuned model, the H0 value obtained with measurements based on the primordial Universe could coincide with local measurements," notes Licia Verde, who concludes: "It won't be easy, but in this way we could thread the cosmic needle without breaking what works well in the model."

###

References:

Licia Verde, Tommaso Treu & Adam G. Riess. "Tensions between the early and late Universe". Nature Astronomy 3: 891-895, October 2019

SINC | EurekAlert!
Further information:
http://www.fecyt.es/fecyt/home.do

More articles from Physics and Astronomy:

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

nachricht Compact broadband acoustic absorber with coherently coupled weak resonances
21.01.2020 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>