Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The force of the vacuum

03.12.2018

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.


The vacuum fluctuations of light (yellow wave) are amplified in an optical cavity (upper and lower reflecting mirrors).

Joerg M. Harms, MPSD

The apparent void bubbles incessantly and produces fluctuations of light even at absolute zero temperature. In a sense, these virtual photons are just waiting to be used. They can carry forces and change the properties of matter.

The force of the vacuum, for instance, is known to produce the Casimir effect. When one moves two parallel metallic plates of a capacitor very close together, they feel a microscopically small but measurable attraction between each other, even if the plates are not electrically charged.

This attraction is created by the exchange of virtual photons between the plates, like two ice skaters who throw a ball back and forth and are subjected to the recoil. If the ball was invisible, one would assume that a repellent force acts between them.

Now, the MPSD team of Michael Sentef, Michael Ruggenthaler and Angel Rubio has published a study in Science Advances, which draws a connection between the force of the vacuum and the most modern materials.

In particular, they explore the question of what happens if the two-dimensional high-temperature superconductor iron selenide (FeSe) on a substrate of SrTiO3 is located in the gap between two metallic plates where virtual photons fly back and forth.

The outcome of their theories and simulations: the force of the vacuum makes it possible to couple the fast electrons in the 2D layer more strongly to the lattice vibrations of the substrate, which swing perpendicular to the 2D layer. The coupling of superconducting electrons and the vibrations of the crystal lattice is a central building block for important properties of many materials.

“We are only beginning to understand these processes,” says Michael Sentef. “For example, we do not know precisely how strong the influence of the vacuum light would realistically be on the oscillations of the surface. We are talking about quasiparticles of light and phonons, so-called phonon polaritons.”

In 3D insulators, phonon polaritons were measured with lasers decades ago. However, this is new scientific territory where complex new 2D quantum materials are concerned. “Of course we hope that our work prompts the experimental colleagues to test our predictions,” Sentef adds.

MPSD Theory Director Angel Rubio is delighted about those new possibilities: “The theories and numerical simulations in our department are a key element in a whole new generation of potential technological developments. Even more importantly, it will encourage researchers to reconsider the old problems associated with the interaction between light and the structure of matter.”

Rubio is highly optimistic regarding the role of fundamental research in this area. “Together with the experimental progress, for example in the controlled production and precise measurement of atomic structures and their electronic properties, we can look forward to great discoveries.” In his view, scientists are about to embark on a new era of the atomic design of the functionalities in chemical compounds, particularly in 2D materials and complex molecules. Rubio is convinced: “The force of the vacuum will help us in this quest.”

Extended image caption:
The vacuum fluctuations of light (yellow wave) are amplified in an optical cavity (upper and lower reflecting mirrors). Crystal lattice vibrations (red atoms) at a two-dimensional interface surf this strong light wave. The thus mixed light-vibrational waves couple particularly strongly to electrons in a two-dimensional atomically thin material (green and yellow atoms), changing its properties.

Wissenschaftliche Ansprechpartner:

Dr. Michael Sentef
Research Group Leader
Telefon: +49 (0)40 8998-88350
E-Mail: michael.sentef@mpsd.mpg.de

Prof. Dr. Angel Rubio
Managing Direktor
angel.rubio@mpsd.mpg.de

Originalpublikation:

M. A. Sentef, M. Ruggenthaler and A. Rubio
Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity
Science Advances, 30 Nov 2018: Vol. 4, no. 11, eaau6969.
DOI: 10.1126/sciadv.aau6969

Weitere Informationen:

http://www.mpsd.mpg.de/511079/2018-11-sentef-vacuum MPSD press release
https://dx.doi.org/10.1126/sciadv.aau6969 Original publication

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht Research helps in understanding the dynamics of dune formation
27.11.2018 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht Racing electrons under control
26.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

Im Focus: A golden age for particle analysis

Process engineers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a method which allows the size and shape of nanoparticles in dispersions to be determined considerably quicker than ever before. Based on gold nanorods, they demonstrated how length and diameter distributions can be measured accurately in just one step instead of the complicated series of electron microscopic images which have been needed up until now. Nanoparticles from precious metals are used, for example, as catalysts and contrast agents for diagnosing cancer. The results have been published in the renowned journal Nature Communications (doi: 10.1038/s41467-018-07366-9).

Even in the Middle Ages, gold particles were used to create vibrant red and blue colours, for example to illustrate biblical scenes in stained glass windows....

Im Focus: Successful second round of experiments with Wendelstein 7-X

The experiments conducted from July until November at the Wendelstein 7-X fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald have achieved higher values for the density and the energy content of the plasma and long discharge times of up to 100 seconds – record results for devices of the stellarator type. Meanwhile, the next round of the step-by-step upgrading of Wendelstein 7-X has begun. It is to equip the device for greater heating power and longer discharges. Wendelstein 7-X, the world’s largest fusion device of the stellarator type, is to investigate the suitability of this configuration for use in a power plant.

During the course of the step-by-step upgrading of Wendelstein 7-X, the plasma vessel was fitted with inner cladding since September of last year.

Im Focus: New process discovered: Mere sunlight can be used to eradicate pollutants in water

Advances in environmental technology: You don’t need complex filters and laser systems to destroy persistent pollutants in water. Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a new process that works using mere sunlight. The process is so simple that it can even be conducted outdoors under the most basic conditions. The chemists present their research in the journal “Chemistry - a European Journal”.

The chemists at MLU rely on electrons moving freely in water, so-called hydrated electrons, to degrade dissolved pollutants.

Im Focus: Ultracold quantum mix

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise hardly accessible. A team led by the Innsbruck physicist Francesca Ferlaino has now succeeded for the first time in mixing quantum gases of the strongly magnetic elements Erbium and Dysprosium and creating a dipolar quantum mixture.

Only a few years ago it seemed unfeasible to extend the techniques of atom manipulation and deep cooling in the ultracold regime to many-valence-electron...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

Top-class programme at the ROS-Industrial Conference 2018

23.11.2018 | Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

 
Latest News

Tablet computers for the visually impaired

03.12.2018 | Information Technology

Quirky glacial behavior explained

30.11.2018 | Earth Sciences

Thick metal sheets? Laser welding!

30.11.2018 | Machine Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>