Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dark side of extrasolar planets share surprisingly similar temperatures

28.08.2019

New study suggests that the nightsides of hot Jupiters share clouds made of minerals

A new study by McGill University astronomers has found that the temperature on the nightsides of different hot Jupiters-- planets that are similar size in to Jupiter, but orbit other stars--- is surprisingly uniform, suggesting the dark sides of these massive gaseous planets have clouds made of minerals and rocks.


Nightsides of hot Jupiters share clouds made of minerals.

Credit: McGill University/Dylan Keating

Using data from the Spitzer Space and the Hubble Space telescopes, the researchers from the McGill Space Institute found that the nightside temperature of 12 hot Jupiters they studied was about 800°C.

Unlike our familiar planet Jupiter, so-called hot Jupiters circle very close to their host star -- so close that it typically takes fewer than three days to complete an orbit. As a result, hot Jupiters have daysides that permanently face their host stars and nightsides that always face the darkness of space, similarly to how the same side of the Moon always faces the Earth. The tight orbit also means these planets receive more light from their star, which is what makes them extremely hot on the dayside. But scientists had previously measured significant amounts of heat on the nightside of hot Jupiters, as well, suggesting some kind of energy transfer from one side to the other.

"Atmospheric circulation models predicted that the nightside temperatures should vary much more than they do," said Dylan Keating, a Physics PhD student under the supervision of McGill professor Nicolas Cowan. "This is surprising because the planets we studied all receive different amounts of irradiation from their host stars and the dayside temperatures among them varies by almost 1700°C."

Keating, the first author of a new Nature Astronomy study describing the findings, said the nightside temperatures are probably the result of condensation of vaporized rock in these very hot atmospheres.

"The uniformity of the nightside temperatures suggests that clouds on this side of the planets are likely similar to one another in composition. Our analysis suggests that these clouds are likely made of minerals such as manganese sulfide or silicates: in other words, rocks," Keating explained.

According to Cowan, because the basic physics of cloud formation are universal, the study of the nightside clouds on hot Jupiters could give insight into cloud formation elsewhere in the Universe, including on Earth. Keating said that future space telescope missions - such as the James Webb Space Telescope and the European Space Agency's ARIEL mission - could be used to further characterize the dominant cloud composition on hot Jupiter nightsides, as well as to improve models of atmospheric circulation and cloud formation of these planets.

"Observing hot Jupiters at both shorter and longer wavelengths will help us determine what types of clouds are on the nightsides of these planets," Keating explained.

###

"Uniformly hot nightside temperatures on short-period gas giants," by Dylan Keating et al. was published in Nature Astronomy. https://www.nature.com/articles/s41550-019-0859-z

About McGill University

Founded in Montreal, Quebec, in 1821, McGill is a leading Canadian post-secondary institution. It has two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,400 graduate students. McGill attracts students from over 150 countries around the world, its 12,500 international students making up 30% per cent of the student body. Over half of McGill students claim a first language other than English, including approximately 20% of our students who say French is their mother tongue.

Media Contact

Cynthia Lee
cynthia.lee@mcgill.ca
514-398-6754

 @McGillU

http://www.mcgill.ca 

Cynthia Lee | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41550-019-0859-z

More articles from Physics and Astronomy:

nachricht The magic wavelength of cadmium
16.09.2019 | University of Tokyo

nachricht Tomorrow´s coolants of choice
16.09.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>