Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaching matter waves new tricks: Making magnets with ultra cold atoms

28.11.2013
Magnets have fascinated mankind for millenia. From the Greek philosophers to scientists of the modern era, which saw the rise of quantum mechanics, magnets have been pondered and investigated.

Nowadays, they are not only intriguing oddities of nature, but also constitute crucial building blocks of modern technology: Ranging from data storage over medical instrumentation to transportation. And yet, to this day, they continue to puzzle scientists.


A novel experiment at the University of Hamburg utilizes matter waves to understand magnets. Magnets are built of elementary magnets which can point North (red) and South (blue), as can be seen in this computer simulation.

Credit: Center for Optical Quantum Technologies (ZOQ)

A novel approach to understand magnets was taken by a team of scientists lead by Klaus Sengstock and Ludwig Mathey from the Institute of Laser Physics at the University of Hamburg, with collaborators from Dresden, Innsbruck and Barcelona. In a joint experimental and theoretical effort, which was featured as the cover story of Nature Physics in November 2013, quantum matter waves made of Rubidium atoms were controlled in such a way that they mimic magnets. Under these well-defined conditions, these artificially created magnets can be studied with clarity, and can give a fresh perspective on long-standing riddles.

Quantum matter waves themselves are an intriguing state of atomic Rubidium clouds, based on a quantum mechanical effect predicted by Einstein and Bose as early as 1924 and observed for the first time in a ground-breaking experiment in 1995, which was later awarded with the Nobel prize.

Building on that experiment and developing it further, the team of scientists used infrared laser beams to force the atoms into a motion along triangular pathways, creating quantum matter waves that act as if they were magnets, like the ones you stick on your fridge. Speaking of cold, these atoms are about a trillion times colder than outer space.

"The experimental challenges are extraordinary", says lead experimental author Julian Struck. "For the atoms to move along the right trajectories, it is absolutely crucial that the laser beams are precisely stabilized. Otherwise, the motion of the atoms would be completely chaotic."

When a matter wave moves clockwise around a given triangle, as depicted in the illustration, the neighboring triangles are surrounded by counterclockwise motion. The resulting orientation at each triangle corresponds to a magnet pointing in North or South direction. These elementary magnets form domains and are in competition with each other, depicted in red and blue.

Lead theoretical author Robert Höppner explains: "We had to use a supercomputing facility such as the one at Juelich for our computer simulations of the experiment. Otherwise the complexity of the problem cannot be tackled. This allowed us to visualize the triangular magnets created by the condensate of atoms, and we learned about the subtle domain structure and how they respond in a magnetic field."

The results of this study have been published in the November issue of Nature Physics, where an illustration of the magnetic phases from the computer simulation is featured on the cover.

This research was supported by the Deutsche Forschungsgemeinschaft (GRK1355,SFB925), the Hamburg Center for Ultrafast Imaging (CUI) and the Landesexzellenzinitiative Hamburg (supported by the Joachim Herz Stiftung), ERC AdG QUAGATUA, AAII-Hubbard, Spanish MICINN (FIS2008-00784), Catalunya-Caixa, EU Projects AQUTE and NAMEQUAM, the Spanish foundation Universidad.es, the Austrian Science Fund (SFB F40 FOQUS), the DARPA OLE program and the John von Neumann Institute for Computing (NIC).

J.Struck, M.Weinberg, C.Ölschläger, P.Windpassinger, J.Simonet, K.Sengstock, R.Höppner, P.Hauke, A.Eckardt, M.Lewenstein & L.Mathey, "Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields." Nature Physics (2013)

Robert Höppner | EurekAlert!
Further information:
http://www.uni-hamburg.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>