Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising discoveries about 2-D molybdenum disulfide

17.08.2015

Berkeley Lab researchers use award-winning campanile probe on promising semiconductor

Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have used a unique nano-optical probe to study the effects of illumination on two-dimensional semiconductors at the molecular level.


With the Campanile probe, optical excitation and collection are spatially confined to the nano-sized gap at the apex of the tip, which is scanned over the sample, recording a full emission spectrum at each position.

Credit: James Schuck, Berkeley Lab

Working at the Molecular Foundry, a DOE Office of Science User Facility, the scientific team used the "Campanile" probe they developed to make some surprising discoveries about molybdenum disulfide, a member of a family of semiconductors, called "transition metal dichalcogenides (TMDCs), whose optoelectronic properties hold great promise for future nanoelectronic and photonic devices.

"The Campanile probe's remarkable resolution enabled us to identify significant nanoscale optoelectronic heterogeneity in the interior regions of monolayer crystals of molybdenum disulfide, and an unexpected, approximately 300 nanometer wide, energetically disordered edge region," says James Schuck, a staff scientist with Berkeley Lab's Materials Sciences Division. Schuck led this study as well as the team that created the Campanile probe, which won a prestigious R&D 100 Award in 2013 for combining the advantages of scan/probe microscopy and optical spectroscopy.

"This disordered edge region, which has never been seen before, could be extremely important for any devices in which one wants to make electrical contacts," Schuck says. "It might also prove critical to photocatalytic and nonlinear optical conversion applications."

Schuck, who directs the Imaging and Manipulation of Nanostructures Facility at the Molecular Foundry, is the corresponding author of a paper describing this research in Nature Communications. The paper is titled "Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide." The co-lead authors are Wei Bao and Nicholas Borys. (See below for a complete list of authors.)

2D-TMDCs rival graphene as potential successors to silicon for the next generation of high-speed electronics. Only a single molecule in thickness, 2D-TMDC materials boast superior energy efficiencies and a capacity to carry much higher current densities than silicon. However, since their experimental "discovery" in 2010, the performance of 2D-TMDC materials has lagged far behind theoretical expectations primarily because of a lack of understanding of 2D-TMDC properties at the nanoscale, particularly their excitonic properties. Excitons are bound pairs of excited electrons and holes that enable semiconductors to function in devices.

"The poor understanding of 2D-TMDC excitonic and other properties at the nanoscale is rooted in large part to the existing constraints on nanospectroscopic imaging," Schuck says. "With our Campanile probe, we overcome nearly all previous limitations of near-field microscopy and are able to map critical chemical and optical properties and processes at their native length scales."

The Campanile probe, which draws its name from the landmark "Campanile" clock tower on the campus of the University of California at Berkeley, features a tapered, four-sided microscopic tip that is mounted on the end of an optical fiber. Two of the Campanile's sides are coated with gold and the two gold layers are separated by just a few nanometers at the tip. The tapered design enables the Campanile probe to channel light of all wavelengths down into an enhanced field at the apex of the tip. The size of the gap between the gold layers determines the resolution, which can be below the diffraction optical limit.

In their new study, Schuck, Bao, Borys and their co-authors used the Campanile probe to spectroscopically map nanoscale excited-state/relaxation processes in monolayer crystals of molybdenum disulfide that were grown by chemical vapor deposition (CVD). Molybdenum disulfide is a 2D semiconductor that features high electrical conductance comparable to that of graphene, but, unlike graphene, has natural energy band-gaps, which means its conductance can be switched off.

"Our study revealed significant nanoscale optoelectronic heterogeneity and allowed us to quantify exciton-quenching phenomena at crystal grain boundaries," Schuck said. "The discovery of the disordered edge region constitutes a paradigm shift from the idea that only a 1D metallic edge state is responsible for all the edge-related physics and photochemistry being observed in 2D-TMDCs. What's happening at the edges of 2D-TMDC crystals is clearly more complicated than that. There's a mesoscopic disordered region that likely dominates most transport, nonlinear optical, and photocatalytic behavior near the edges of CVD-grown 2D-TMDCs."

In this study, Schuck and his colleagues also discovered that the disordered edge region in molybdenum disulfide crystals harbors a sulfur deficiency that holds implications for future optoelectronic applications of this 2D-TMDC.

"Less sulfur means more free electrons are present in that edge region, which could lead to enhanced non-radiative recombination," Schuck says. "Enhanced non-radiative recombination means that excitons created near a sulfur vacancy would live for a much shorter period of time."

Schuck and his colleagues plan to next study the excitonic and electronic properties that may arise, as well as the creation of p-n junctions and quantum wells, when two disparate types of TMDCs are connected

"We are also combining 2D-TMDC materials with so-called meta surfaces for controlling and manipulating the valley states and circular emitters that exist within these systems, as well as exploring localized quantum states that could act as near-ideal single-photon emitters and quantum-entangled Qubit states," Schuck says.

###

In addition to Schuck, Bao, Borys and Weber-Bargioni, other co-authors of the Nature Communications paper are Changhyun Ko, Joonki Suh, Wen Fan, Andrew Thron, Yingjie Zhang, Alexander Buyanin, Jie Zhang, Stefano Cabrini, Paul Ashby, Alexander Weber-Bargioni, Sefaattin Tongay, Shaul Aloni, Frank Ogletree, Junqiao Wu and Miquel Salmeron.

This research was supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Media Contact

Lynn Yarris
lcyarris@lbl.gov
510-486-5375

 @BerkeleyLab

http://www.lbl.gov 

Lynn Yarris | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>