Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful landing: Philae reports from the surface of the comet 67P/Churyumov-Gerasimenko

12.11.2014

November 12, 2014 goes down in history. On this Wednesday, an unmanned probe landed on a comet nucleus for the first time ever. Philae is to remain there as a permanent research station to collect data and take measurements for at least 60 hours. On its way to 67P/Churyumov-Gerasimenko, Philae followed a precisely defined choreography.

Already on 8 November, the ground crew sent the computer sequence that controlled the landing to Philae via the orbiter. On Monday, the lander was switched on and heated. On the morning of 12 November, the mother spacecraft Rosetta hovered just over 22 kilometres above the powdery surface of the comet 67P / Churyumov-Gerasimenko.


View of Philae: The lander about two hours after seperation, taken by the scientific camera system OSIRIS onboard Rosetta from a distance of 2.5 kilometers. The resolution of the image is five centimeters per pixel.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Between 7.35 and 8.35 CET, the final 'go' was given by the ground control centre. Experts of the European Space Agency checked whether Rosetta's orbit was correct. Even though there were problems with the lander cold gas system, which was supposed to push Philae gently onto the comet surface after landing, the decision was made to separate as scheduled. Three preloaded springs manoeuvred Philae into space with a gentle nudge at 9.35 CET. The refrigerator-sized box drifted away from the mother ship.

At 10.03 CET the control centre ESOC in Darmstadt confirmed the successful separation. Approximately two hours after the separation, data transfer began. The lander sent signals to the orbiter, from which they travelled to earth at the speed of light. Because the comet is flying through space at a distance of 500 million kilometres from our planet, the signals took 28 minutes and 20 second to reach us. They reached ESOC at 12.07 CET.

With this delay, the researchers and technicians already gathered information on the status of Philae during the descent Around 12.25 CET it was confirmed that the three landing legs and a sensor had been deployed. Moreover, first pictures of the on-board camera CIVA should soon arrive and measurements from instruments such as the radio radar CONSERT be transferred.

During the descent, Philae itself could not be controlled from Earth. Rather, the 100 kg mass spacecraft drifted in free fall towards the comet's nucleus at the speed of 18 kilometres per second. The landing area - recently christened Agilkia after a naming contest by ESA - was imprecise; the landing ellipse had an area of more than half a square kilometre. Due to the precise separation manoeuvre, Philae was exactly on course; the diameter of the landing ellipse had been reduced to 400 metres.

Roughly two hours after separation, Rosetta's onboard OSIRIS camera system was looking at the departing lander. "Philae is on a good way," Hermann Böhnhardt from the MPI for Solar System Research, lead scientist of the landing mission, commented. As evidenced by the most recent image, the lander had also successfully unfolded its legs. "To be able to watch this historic landing through the eyes of our camera is a feeling that cannot be described in words," says Max Planck Researcher Holger Sierks, leader of the OSIRIS team. "Since Rosetta's launch more than ten years ago, we have not seen any images of the lander. Now it is floating freely in space on its way to the comet's surface".

16.34 h CET: Touchdown, Philae has landed! When the probe touched down at a rate of three and a half miles per hour, two explosive harpoons were fired into the surface. In addition, screw-like tips under the footpads of the three legs of the lander drilled into the comet's crust. A shock absorbing mechanism in the central cavity of the landing gear absorbed the energy and ensured that Philae did not bounce into space.

At 17.03 CET, signals were received by control. It was clear soon after this: Landing was successful! The touch-down signal is triggered at the moment in which the central element of the landing gear was pushed upwards by the landing and the contact pressure. Also data about the release of the harpoons reached earth quite rapidly.

Next, the first pictures of the panoramic camera on the monitors appear. Is the horizon of the comet visible? The greatest danger for Philae is offered by the terrain itself. While the landscape appears to be very flat, chunks on the surface or a slope could have considerably affected the landing.

If one of the legs of the probe had landed on a rock or a slope, and if the slope had been inclined by more than 30 degrees, Philae could have rolled off - which would probably have meant the end of the mission.

Now the first science sequence will begin. First, experts analyse illumination in order to gain crucial evidence for the energy supply; because the batteries of the lander are charged via solar energy. Afterwards, all of the board instruments are put into operation.

The "hot phase", in which Philae is to measure and collect data, should last at least 60 hours. Secretly, engineers and scientists hope that the lander will survive significantly longer. Actually it is supposed to work up to a distance of about 300 million kilometres from the sun.

This point will be reached at the end of March 2015. After that, things should come to an end. If it is not hit and hurled into space by a dust fountain, the lander will overheat or perish through energy deficiency caused by dirty sun panels. Until then, Philae could have revolutionized our picture of comets.

Contact

Dr. Birgit Krummheuer

Press and Public Relations
Max Planck Institute for Solar System Research, Göttingen

Phone: +49 551 384979-462

Email: Krummheuer@mps.mpg.de

Helmut Hornung | Max-Planck-Institut
Further information:
http://www.mpg.de/8751017/comet-landing

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>