Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows How Hopping Robots Could Conserve Energy

30.10.2012
A new study shows that jumping can be much more complicated than it might seem.

In research that could extend the range of future rescue and exploration robots, scientists have found that hopping robots could dramatically reduce the amount of energy they use by adopting a unique two-part “stutter jump.”

Taking a short hop before a big jump could allow spring-based “pogo-stick” robots to reduce their power consumption as much as ten-fold. The formula for the two-part jump was discovered by analyzing nearly 20,000 jumps made by a simple laboratory robot under a wide range of conditions.

“If we time things right, the robot can jump with a tenth of the power required to jump to the same height under other conditions,” said Daniel Goldman, an assistant professor in the School of Physics at the Georgia Institute of Technology. “In the stutter jumps, we can move the mass at a lower frequency to get off the ground. We achieve the same takeoff velocity as a conventional jump, but it is developed over a longer period of time with much less power.”

The research was reported October 26 in the journal Physical Review Letters. The work was supported by the Army Research Laboratory’s MAST program, the Army Research Office, the National Science Foundation, the Burroughs Wellcome Fund and the GEM Fellowship.

Jumping is an important means of locomotion for animals, and could be important to future generations of robots. Jumping has been extensively studied in biological organisms, which use stretched tendons to store energy.

The Georgia Tech research into robot jumping began with a goal of learning how hopping robots would interact with complicated surfaces – such as sand, granular materials or debris from a disaster. Goldman quickly realized he’d need to know more about the physics of jumping to separate the surface issues from the factors controlled by the dynamics of jumping.

Inspired by student-directed experiments on the dynamics of hopping in his nonlinear dynamics and chaos class, Goldman asked Jeffrey Aguilar, a graduate student in the George W. Woodruff School of Mechanical Engineering, to construct the simplest jumping robot. Aguilar built a one-kilogram robot that is composed of a spring beneath a mass capable of moving up and down on a thrust rod. Aguilar used computer controls to vary the starting position of the mass on the rod, the amplitude of the motion, the pattern of movement and the frequency of movement applied by an actuator built into the robot’s mass. A high-speed camera and a contact sensor measured and recorded the height of each jump.

Aguilar and Goldman then collaborated with theorists Professor Kurt Wiesenfeld and Alex Lesov, from the Georgia Tech School of Physics, to explain the results of the experiments.

The researchers expected to find that the optimal jumping frequency would be related to the resonant frequency of the spring and mass system, but that turned out not to be true. Detailed evaluation of the jumps showed that frequencies above and below the resonance provided optimal jumping – and additional analysis revealed what the researchers called the “stutter jump.”

“The preparatory hop allows the robot to time things such that it can use a lower energy to get to the same jump height,” Goldman explained. “You really don’t have to move the mass rapidly to get a good jump.”

The amount of energy that can be stored in batteries can limit the range and duration of robotic missions, so the stutter jump could be helpful for small robots that have limited power. Optimizing the efficiency of jumping could therefore allow the robots to complete longer and more complex missions.

But because it requires longer to perform than a simple jump, the two-step jump may not be suitable for all conditions.

“If you’re a small robot and you want to jump over an obstacle, you could save energy by using the stutter jump even though that would take longer,” said Goldman. “But if a hazard is threatening, you may need to expend the additional energy to make a quick jump to get out of the way.”

For the future, Goldman and his research team plan to study how complicated surfaces affect jumping. They are currently studying the effects of sand, and will turn to other substrates to develop a better understanding of how exploration or rescue robots can hop through them.

Goldman’s past work has focused on the lessons learned from the locomotion of biological systems, so the team is also interested in what the robot can teach them about how animals jump. “What we have learned here can function as a hypothesis for biological systems, but it may not explain everything,” he said.

The simple jumping robot turned out to be a useful system to study, not only because of the interesting behaviors that turned up, but also because the results were counter to what the researchers had expected.

“In physics, we often study the steady-state solution,” Goldman noted. “If we wait enough time for the transient phenomena to die off, then we can study what’s left. It turns out that in this system, we really care about the transients.”

This research is supported by the Army Research Laboratory under cooperative agreement number W911NF-08-2-004, by the Army Research Office under cooperative agreement W911NF-11-1-0514, and by the National Science Foundation under contract PoLS PHY-1150760. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Army Research Laboratory, the Army Research Office or the National Science Foundation.

CITATION: Aguilar, Jeffrey et al., “Lift-off dynamics in a simple jumping robot,” Physical Review Letters (2012): http://prl.aps.org/abstract/PRL/v109/i17/e174301

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 309
Atlanta, Georgia 30308 USA
Media Relations Contact: John Toon (404-894-6986)(jtoon@gatech.edu)
Writer: John Toon

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Tel Aviv University-led team discovers new way supermassive black holes are 'fed'
15.01.2019 | American Friends of Tel Aviv University

nachricht Arbitrary quantum channel simulation for a superconducting qubit
14.01.2019 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>