Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study jointly led by UCSB researcher supports theory of extraterrestrial impact

06.03.2012
A 16-member international team of researchers that includes James Kennett, professor of earth science at UC Santa Barbara, has identified a nearly 13,000-year-old layer of thin, dark sediment buried in the floor of Lake Cuitzeo in central Mexico.

The sediment layer contains an exotic assemblage of materials, including nanodiamonds, impact spherules, and more, which, according to the researchers, are the result of a cosmic body impacting Earth.

These new data are the latest to strongly support of a controversial hypothesis proposing that a major cosmic impact with Earth occurred 12,900 years ago at the onset of an unusual cold climatic period called the Younger Dryas. The researchers' findings appear today in the Proceedings of the National Academy of Sciences.

Conducting a wide range of exhaustive tests, the researchers conclusively identified a family of nanodiamonds, including the impact form of nanodiamonds called lonsdaleite, which is unique to cosmic impact. The researchers also found spherules that had collided at high velocities with other spherules during the chaos of impact. Such features, Kennett noted, could not have formed through anthropogenic, volcanic, or other natural terrestrial processes. "These materials form only through cosmic impact," he said.

The data suggest that a comet or asteroid –– likely a large, previously fragmented body, greater than several hundred meters in diameter –– entered the atmosphere at a relatively shallow angle. The heat at impact burned biomass, melted surface rocks, and caused major environmental disruption. "These results are consistent with earlier reported discoveries throughout North America of abrupt ecosystem change, megafaunal extinction, and human cultural change and population reduction," Kennett explained.

The sediment layer identified by the researchers is of the same age as that previously reported at numerous locations throughout North America, Greenland, and Western Europe. The current discovery extends the known range of the nanodiamond-rich layer into Mexico and the tropics. In addition, it is the first reported for true lake deposits.

In the entire geologic record, there are only two known continent-wide layers with abundance peaks in nanodiamonds, impact spherules, and aciniform soot. These are in the 65-million-year-old Cretaceous-Paleogene boundary layer that coincided with major extinctions, including the dinosaurs and ammonites; and the Younger Dryas boundary event at 12,900 years ago, closely associated with the extinctions of many large North American animals, including mammoths, mastodons, saber-tooth cats, and dire wolves.

"The timing of the impact event coincided with the most extraordinary biotic and environmental changes over Mexico and Central America during the last approximately 20,000 years, as recorded by others in several regional lake deposits," said Kennett. "These changes were large, abrupt, and unprecedented, and had been recorded and identified by earlier investigators as a 'time of crisis.' "

Other scientists contributing to the research include Isabel Israde-Alcántara and Gabriela Dominguez-Vásquez of the Universidad Michoacana de San Nicólas de Hidalgo; James L. Bischoff of the U.S. Geological Survey; Hong-Chun Li of National Taiwan University; Paul S. DeCarli of SRI International; Ted E. Bunch and James H. Wittke of Northern Arizona University; James C. Weaver of Harvard University; Richard B. Firestone of Lawrence Berkeley National Laboratory; Allen West of GeoScience Consulting; Chris Mercer of the National Institute for Materials Science; Sujing Zie and Eric K. Richman of the University of Oregon, Eugene; and Charles R. Kinzie and Wendy S. Wolbach of DePaul University.

Andrea Estrada | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>