Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

STONE-6 artificial meteorite shows martian impactors could carry traces of life

25.09.2008
An artificial meteorite designed by the European Space Agency has shown that traces of life in a martian meteorite could survive the violent heat and shock of entry into the Earth’s atmosphere. The experiment’s results also suggest that meteorite hunters should widen their search to include white rocks if we are to find traces of life in martian meteorites.

The STONE-6 experiment tested whether sedimentary rock samples could withstand the extreme conditions during a descent though the Earth’s atmosphere where temperatures reached at least 1700 degrees Celsius.

After landing, the samples were transported in protective holders to a laboratory clean-room at ESTEC and examined to see if any traces of life remained. The results will be presented by Dr Frances Westall at the European Planetary Science Congress on Thursday 25th September.

Recent missions have gathered compelling evidence for water and sediments on early Mars. Potential traces of Martian life are more likely to be found in sediments that have been formed in water. However, although about 39 known meteorites from Mars have been identified, all are basaltic rock-types and no sedimentary meteorites have been found to date.

Dr Westall said, “The STONE-6 experiment shows that sedimentary martian meteorites could reach Earth. The fact that we haven’t found any to date could mean that we need to change the way we hunt for meteorites. Most meteorites have been found in Antarctica, where their black fusion crust shows up clearly against the white snow. In this experiment we found that the sedimentary rocks developed a white crust or none at all. That means that we need to expand our search to white or light-coloured rocks.”

The STONE-6 experiment was mounted on a FOTON M3 capsule that was launched from Baikonur on 14th September 2007. Two samples of terrestrial sedimentary rock and a control sample of basalt were fixed to the heat-shield of the return capsule, which re-entered the atmosphere on 26th September after 12 days in orbit. The basalt was lost during re-entry. However, a sample of 3.5 billion year old volcanic sand containing carbonaceous microfossils and a 370 million year sample of mudstone from the Orkney Islands containing chemical biomarkers both survived.

On examination at ESTEC, the 3.5 billion year old sample of sand from Pilbara in Australia was found to have formed a half-millimetre thick fusion crust that was creamy white in colour. About half the rock had ablated but the microfossils and carbon survived at depth in the sample. Approximately 30 percent of the other sediment, a lacustrine sand from the Orkney Islands, also survived, as did some of the biomolecules. The heat of entry resulted in mineralogical changes in both rocks.

The rocks also transported living organisms, a type of bacteria called Chroococcidiopsis, on the back of the rocks, away from the exposed edge. Unfortunately the heat of reentry was so high, even with a protective two centimetre-thick rock coating, that the organisms were carbonised. They died but their cells still remain as “pompeified” forms.

Dr Westall said, “The STONE-6 experiment suggests that, if martian sedimentary meteorites carry traces of past life, these traces could be safely transported to Earth. However, the results are more problematic when applied to Panspermia, a theory that proposes living cells could be transported between planets. STONE-6 showed at least two centimetres of rock is not sufficient to protect the organisms during entry.”

FURTHER INFORMATION

STONE-6
In 1999, ESA created the first artificial meteorite experiment in space, STONE-1, which tested the effects of entry into the Earth’s atmosphere on samples of igneous and sedimentary rock as well as a simulated sample of martian regolith. Since then, further STONE experiments have tested the effects on different rock types and biological traces. During descent, the re-entry capsule reaches a velocity of 7.6 kilometres per second, slightly lower than normal meteorite velocities of 12-15 kilometres per second.

For further details, see: http://www.esa.int/esaCP/SEMN5ZMPQ5F_FeatureWeek_0.html

EUROPEAN PLANETARY SCIENCE CONGRESS
EPSC 2008 is organised by Europlanet, the European Planetology Network in association with the European Geosciences Union and the Westfälische Wilhelms Universität, Münster.
For further details, see the meeting website:
http://meetings.copernicus.org/epsc2008/
EUROPLANET
EuroPlaNet co-ordinates activities in Planetary Sciences in order to achieve a long-term integration of this discipline in Europe.
The objectives are to:
1) increase the productivity of planetary projects with European investment, with emphasis on major planetary exploration missions;
2) initiate a long-term integration of the European planetary science community;
3) improve European scientific competitiveness, develop and spread expertise in this research area;

4) improve public understanding of planetary environments.

Europlanet Project website: http://europlanet.cesr.fr/
Europlanet Outreach website: http://www.europlanet-eu.org
Information films on Europlanet can be found at:
http://www.youtube.com/watch?v=5Bn_lhDXWSA
http://www.youtube.com/watch?v=mcEtDuGOmAQ
IMAGES
Images can be found at:
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=123&Itemid=41

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=123&Itemid=41

More articles from Physics and Astronomy:

nachricht Newfound superconductor material could be the 'silicon of quantum computers'
16.08.2019 | National Institute of Standards and Technology (NIST)

nachricht Moon glows brighter than sun in images from NASA's Fermi
16.08.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>