Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another step towards quantum computing: coupling of nitrogen centers in a diamond

01.03.2010
Nature Physics: coupling of nitrogen centers in a diamond
Research group develops quantum register at room-temperature

Another decisive step forward in the development of quantum computers has been successful. For the first time ever, researchers at the Ruhr University in Bochum, the Universities of Stuttgart and Austin /Texas (USA) have accomplished to place two nitrogen atoms in a distance of only few nanometers, so that laser excitation will be capable of creating a quantum mechanical coupling.

The key to the solution: it works with high precision, reliably, and even at room-temperature only in a diamond. The RUBION particle accelerator at the Ruhr University disposes of the ideal instrumentation for this ion implantation in diamonds and by now makes implantations available to other universities like Harvard or to the MIT. "Initially numerous groups focused on silicon," says Dr. Jan Meijer at Bochum's RUBION, "but these researches demonstrated that diamonds are particularly well suited for coupled quantum circuits." The scientists reported their results in the noted journal "Nature Physics".

Why diamonds?

The research results confirm a hypothesis on the special properties of diamonds which has been put forward by the Stuttgart scientists Prof. Dr. Jörg Wrachtrup and Dr. Fedor Jelezko several years ago: color centers or NV centers are immobile in the surrounding carbon lattice - whereby N stands for nitrogen and V for a vacancy. Since there is actually no "diffusion" inside a diamond, the atoms won't migrate back and forth. When targeted by a laser, the two nitrogen centers will react and a manipulable superposition of their spin states - the rotational movement of electrons - results. These highly complex studies were conducted in Stuttgart.

Simultaneous multiple states

Spin up - spin down: these are primarily the two states the coupled atoms can assume, comparable with "0" and "1" in a computer. However, the processes in this quantum "circuit" are much more sophisticated. "Microscopical and quantum mechanical systems prepared this way differ totally from our everyday experience and can take on, for example, several states at one and the same time," says Jan Meijer. "You can almost compare them with two conventional PC memory devices coupled in such a manner that they interfere with each other."

Quantum computer: the first step is made

That the coupling of the atoms in the diamond's color center even works at room-temperature is the crucial requisite for building a quantum computer. Meijer: "Basically it is imaginable and possible to create several of these NV centers deliberately by means of ion implantation, couple them together in a scalable fashion and have a classical computer control it all." The number of couplings is now to be increased step by step. "This is a great challenge," says Meijer, "because the greater the number of couplings, the faster the system will fall apart."

Unlimited possibilities

The possibilities are - theoretically - immeasurable: if we were to connect only 100 of these NV centers with each other, we would get two to the power of 100 coupled memory cells. "Physically, this is considerably more than we need to store the entire knowledge of humankind," as Dr. Meijer explains the dimensions. A totally new computer technology can be built by applying the laws of quantum mechanics - with it, we could, for example, calculate the properties of complex biological molecules or crack codes within a fraction of a second.

Title record

Neumann et al.: Quantum register based on coupled electron spins in a room-temperature solid. In: Nature Physics. Published online: 28 February 2010, doi: 10.1038/NPHYS1536

Further information

PD Dr. Jan Meijer, RUBION, Ruhr University, Bochum, Tel. 0234/32-26612, Email: jan.meijer@rub.de

Prof. Dr. Jörg Wrachtrup, University of Stuttgart, Third Institute of Physics, Tel. 0711/685-65278, Email: wrachtrup@physik.uni-stuttgart.de

Editorial: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>