Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sound of light: Innovative technology shatters the barriers of modern light microscopy

02.07.2009
Researchers at the Helmholtz Zentrum München and the Technische Universität München are using a combination of light and ultrasound to visualize fluorescent proteins that are seated several centimeters deep into living tissue.

In the past, even modern technologies have failed to produce high-resolution fluorescence images from this depth because of the strong scattering of light.

In the Nature Photonics journal, the Munich researchers describe how they can reveal genetic expression within live fly larvae and fish by “listening to light”. In the future this technology may facilitate the examination of tumors or coronary vessels in humans.

Since the dawn of the microscope scientists have been using light to scrutinize thin sections of tissue to ascertain whether they are healthy or diseased or to investigate cell function. However, the penetration limits for this kind of examination lie between half a millimeter and one millimeter of tissue. In thicker layers light is diffused so strongly that all useful details are obscured.

Together with his research team, Professor Vasilis Ntziachristos, director of the Institute of Biological and Medical Imaging of the Helmholtz Zentrum München – German Research Center for Environmental Health and chair for biological imaging at the Technische Universität München, has now broken through this barrier and rendered three-dimensional images through at least six millimeters of tissue, allowing whole-body visualization of adult zebra fish.

To achieve this feat, Prof. Ntziachristos and his team made light audible. They illuminated the fish from multiple angles using flashes of laser light that are absorbed by fluorescent pigments in the tissue of the genetically modified fish. The fluorescent pigments absorb the light, a process that causes slight local increases temperature, which in turn result in tiny local volume expansions. This happens very quickly and creates small shock waves. In effect, the short laser pulse gives rise to an ultrasound wave that the researchers pick up with an ultrasound microphone.

The real power of the technique, however, lies in specially developed mathematical formulas used to analyze the resulting acoustic patterns. An attached computer uses these formulas to evaluate and interpret the specific distortions caused by scales, muscles, bones and internal organs to generate a three-dimensional image.

The result of this “multi-spectral opto-acoustic tomography”, or MSOT, is an image with a striking spatial resolution better than 40 micrometers (four hundredths of a millimeter). And best of all, the sedated fish wakes up and recovers without harm following the procedure.

Dr. Daniel Razansky, who played a pivotal role in developing the method, says, "This opens the door to a whole new universe of research. For the first time, biologists will be able to optically follow the development of organs, cellular function and genetic expression through several millimeters to centimeters of tissue.”

In the past, understanding the evolution of development or of disease required numerous animals to be sacrificed. With a plethora of fluorochrome pigments to choose from – including pigments using the fluorescence protein technology for which a Nobel Prize was awarded in 2008 and clinically approved fluorescent agents – observing metabolic and molecular processes in all kinds of living organisms, from fish to mice and humans, will be possible. The fruits of pharmaceutical research can also be harvested faster since the molecular effects of new treatments can be observed in the same animals over an extended period of time.

Bio-engineer Ntziachristos is convinced that, “MSOT can truly revolutionize biomedical research, drug discovery and healthcare. Since MSOT allows optical and fluorescence imaging of tissue to a depth of several centimeters, it could become the method of choice for imaging cellular and subcellular processes throughout entire living tissues.”

Further information
Reference:
Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo
Daniel Razansky, Martin Distel, Claudio Vinegoni, Rui Ma, Norbert Perrimon, Reinhard W. Köster & Vasilis Ntziachristos

Nature Photonics, published online on 21 June 2009; doi:10.1038/nphoton.2009.98

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 15 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

The Institute for Biological and Medical Imaging (IBMI) focuses on the development and propagation of in-vivo imaging technology to the life sciences with application spanning from basic and drug discovery interrogations to pre-clinical imaging and clinical translation.

Editor
Sven Winkler, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. Phone: +49(0)89-3187-3946. Fax +49(0)89-3187-3324, email: presse@helmholtz-muenchen.de

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>