Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smaller and cheaper but 300 times more intense

12.10.2010
More brilliant X-rays, more cost-effective methods for developing new energy sources and advanced manufacturing processes are just some of the benefits which may come from a novel technology, proven at the theoretical level by a consortium of British and European laser scientists. The research, led by scientists at the Science and Technology Facilities Council’s Central Laser Facility is published in this week’s edition of Nature Physics (October 10 2010).

A team of scientists from the Instituto Superior Tecnico in Lisbon, Imperial College London, and the Universities of St Andrews, Lancaster and Strathclyde as well as STFC's Central Laser Facility staff have demonstrated the feasibility of a groundbreaking method called Raman amplification which can take long laser pulses and compress them to 1000 times shorter, but with intensities 300 times greater.

This means that current very expensive and complex laser set-ups could eventually be replaced with smaller and more cost effective systems. This would make many technologies, including methods used to develop x-rays which rely on lasers, far more accessible and easier to mass-produce. This latest development is another step in laser scientists quest to develop ever more powerful lasers, increasingly demanded by new technologies since the invention of the laser 50 years ago.

The technique has been examined over a two year period, using some of the world's most powerful supercomputers, to test every possible aspect of the theory. "In the past, studies have been carried out to test the theory, but only using simplified models which do not include all of the relevant phenomena. Our new model has shown that, in most cases, the amplified laser beam breaks up into 'spikes', making it difficult to focus the beam to a small spot" said Dr Raoul Trines from STFC's Central Laser Facility. "But for a few special cases, the amplified laser pulse is of excellent quality, enabling exceptionally tight focusing of the beam".

Professor John Collier, Director, STFC's Central Laser Facility said; "This year's celebration of 50 years of the laser* is a poignant reminder that we need to start thinking about the next generation of laser technology. We have come to rely on lasers so much in our daily lives, for everything from high speed internet connections to medical techniques, that we can't afford to pause even for a moment in developing laser techniques further, because these new techniques take years to develop and test".

The next step is to apply the theoretical study on an actual high power laser and fine tune the method through rigorous experimental testing.

The study has been funded by the Accelerator Science and Technology Centre (ASTeC) with cross-departmental involvement within STFC, including collaboration with STFC's e-science department through the use of the CLF's SCARF LEXICON supercomputer and the Instituto Tecnico in Lisbon, Imperial College London and the Universities of St Andrews, Lancaster and Strathcylde. It has also been made possible through a grant from one of STFC's sister councils, Engineering and Physical Sciences Research Council (EPSRC).

Jill Little | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>