Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single atoms for detecting extremely weak forces

04.08.2010
MPQ-scientists demonstrate that due to synchronisation atoms can be influenced by forces as weak as 5 yoctonewton.

Back in the 17th century the Dutch physicist Christiaan Huygens made the observation that the oscillation of two pendulums synchronize once they get under mutual influence.

This holds for even very loose coupling, for instance, when both pendulums are mounted onto the same wall. Interestingly, a large variety of oscillating systems shows this kind of behaviour, ranging from organ pipes to lasers or electronic circuits. A team of scientists in the Laser Sepctroscopy Division of Professor Theodor W. Hänsch at the Max Planck Institute of Quantum Optics (MPQ) has now succeeded in observing this technically rather important phenomenon for a single extremely cold atom (Phys. Rev. Lett. 105, 013004, 2 July 2010). As was shown in the experiment, the forces necessary for the synchronisation of the atomic oscillation with an external radiofrequency signal were as low as 5 yoctonewton (5 x 10^-24 N). Hence, single atoms can serve as extremely sensitive detectors for very weak forces – perhaps even sensitive enough for measuring the magnetic moment of a single molecule for the first time.

The experiment starts with storing a single magnesium ion in a so-called Paul-trap. The alternating fields of the trap keep the atom at a fixed point in space, whereas the very high vacuum guarantees that the ion oscillates without perturbation. The ion is then addressed by two well tuned laser beams which make it oscillate with an amplitude of around a tenth of a millimetre. High-resolution optics and a sensitive camera make it possible to register this oscillation by the emitted stray light. In order to investigate the synchronisation of the oscillation of the optically excited atom with an external source a second alternating field is applied to an electrode nearby, and the ion oscillation is monitored with a stroboscope. Once the frequency of the external signal is close enough to the oscillation frequency of the ion its motion sychronizes with the external field.

A careful determination of the forces exerted by the applied ac-field shows that even very small excitations of only 5 yN give rise to synchronisation. Without the experimental “tricks” described above it is almost impossible to detect forces of this order. For example, a force of 5 yN would displace the ion by only around one nanometer (10^-9 metre), whereas the amplitude of the ion oscillation due to its temperature already amounts to 5000 nanometres.

The extremely high sensitivity demonstrated in this experiment offers a variety of applications. For example, it could be used to measure the magnetic field of a single molecule for testing fundamental interactions. The experiment described here is a promising step in this direction. Maximilian Herrmann

Original publication:
S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T.W. Hänsch,
K. Vahala, and Th. Udem
Injection locking of a trapped-ion phonon laser
Physical Review Letters 105, 013004 (2010)
Contact:
Prof. Dr. Theodor W. Hänsch
Chair of Experimental Physics at Ludwig-Maximilians-Universität Munich
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 702/712
Fax: +49 - 89 / 32905 312
E-mail: t.w.haensch@mpq.mpg.de
Dr. Maximilian Herrmann
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 – 266
Fax: +49 - 89 / 32905 – 312
E-mail: maximilian.herrmann@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>