Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations Illuminate Universe's First Twin Stars

14.07.2009
The earliest stars in the universe formed not only as individuals, but sometimes also as twins, according to a paper published today in Science Express.

By creating robust simulations of the early universe, astrophysicists Matthew Turk and Tom Abel of the Kavli Institute for Particle Astrophysics and Cosmology, located at the Department of Energy’s SLAC National Accelerator Laboratory, and Brian O'Shea of Michigan State University have gained the most detailed understanding to date of the formation of the first stars.

"We used to think that these stars formed by themselves, but now we see from our computer simulations that sometimes they have siblings," said Turk. "These stars provide the seeds of next generation star formation, so by understanding them we can better understand how other stars and galaxies formed."

To make this discovery, the researchers created an extremely detailed computer simulation of early star formation. Into this virtual universe they sprinkled primordial gas and dark matter as it existed soon after the Big Bang, data they obtained from observations of the cosmic microwave background. This mostly uniform radiation—a faint glow of radio waves spread across the entire sky—contains subtle variations that reflect the beginning of all structure in the universe.

Turk, Abel and O'Shea ran five data-intensive simulations, each of which covered a 400 quadrillion cubic mile volume of the universe and took about three weeks to run on 64 processors. The simulations focused on the first Population III stars: massive, hot stars thought to have formed a mere several hundred million years after the Big Bang.

As the researchers watched their simulated universe evolve, waves of gas and dark matter swirled through the hot, dense universe. As the universe cooled, gravity began to draw the matter together into clumps. In areas rich with matter, stars began to form. And, in one out of the researchers' five simulations, a single cloud of dust and dark matter formed into "twin" stars: one with a mass equivalent to about 10 suns, and one with a mass equivalent to about 6.3 suns. Both of them were still growing at the end of the calculation and will likely grow to many times that mass.

"We ran five of these calculations starting from the beginning of the universe, and to our surprise one of them was special," said Abel. "This opens a whole new realm of research possibilities. These stars could evolve into two black holes, which could have created gravitational waves we could detect with an instrument like the Laser Interferometer Gravitational Wave Observatory and, if they fall into bigger black holes, for the Laser Interferometer Space Antenna. Or one of the stars could evolve into a black hole that could create gamma-ray bursts that we could detect with the Swift mission and the Fermi Gamma-ray Space Telescope."

Turk added: "This will help us fine-tune our models for how structure in the universe formed and evolved. Understanding the very early stars helps us understand what we see today. It even helps explain how and when some of the atoms now on earth and in our bodies were first formed."

The Kavli Institute for Particle Astrophysics and Cosmology, initiated by a grant from Fred Kavli and the Kavli Foundation, is a joint institute of Stanford University and SLAC National Accelerator Laboratory.

SLAC is a multi-program laboratory exploring frontier questions in astrophysics, photon science, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford for the U.S. Department of Energy Office of Science.

Melinda Lee | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>