Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating Flow From Volcanoes and Oil Spills

14.08.2013
Study in the journal Physics of Fluids will help scientists understand and predict paths of debris and destruction from natural and manmade disasters

Some time around 37,000 BCE a massive volcano erupted in the Campanian region of Italy, blanketing much of Europe with ash, stunting plant growth and possibly dooming the Neanderthals. While our prehistoric relatives had no way to know the ash cloud was coming, a recent study provides a new tool that may have predicted what path volcanic debris would take.

"This paper provides a model for the pattern of the ash cloud if the wind is blowing past an eruption of a given size," said Peter Baines, a scientist at the University of Melbourne in Australia who did the study. He published his work in the journal Physics of Fluids.

Volcanic eruptions are an example of what Baines calls an "intrusion." Other examples include exhaust rising from a chimney, sewage flowing into the ocean, and the oil spilling underwater in the 2010 Deepwater Horizon disaster. In all these events, a fluid rises into a density-stratified environment like the atmosphere or the ocean. As the fluid rises, it is pushed by winds or currents, and this crossflow can cause the intruding fluid to disperse far from its origin.

Scientists have previously modeled intrusions into a completely calm environment, but before Baines nobody had ever attempted to introduce the effect of crosswinds, a necessary step toward making such models more realistic and useful.

Predicting Ash and Oil Flows

Baines thinks his work could be used to estimate how much ash is pouring out of a volcano, or how fast oil is gushing from a hole in the sea floor.

Baines is now working with volcanologists in Britain to apply his model to historic eruptions like the Campanian event and the catastrophic Toba supereruption that occurred around 73,000 years ago in Indonesia. The scientists are hoping to use ash deposits from these volcanoes to develop a sharper picture of the amount and speed of the ejected material.

"Most of what we know about prehistoric eruptions is from sedimentary records," said Baines. "You then have to try to infer what the nature of the eruption was, when this is the only information you’ve got."

Baines said his model can also help forecast the deposition patterns of future eruptions. And that should give us a big leg up on the poor Neanderthals.

How the Model Works

To understand how intrusions work in the presence of crossflows, Baines developed what he calls a semi-analytical model. He began with fluid dynamics equations, and then used numerical calculations to arrive at approximate solutions for specifics combinations of source flow and spread rates, and crosswind speed. He found that, under normal wind speeds, the intruding fluid reached a maximum thickness at a certain distance upstream from the source, and thinned in the downstream direction. The distance to the upstream stagnation point depended much more on the rate of source flow than the crossflow speed.

The article, "The dynamics of intrusions into a density-stratified crossflow" by Peter G. Baines, appears in the Journal Physics of Fluids. See: http://dx.doi.org/10.1063/1.4811850

ABOUT THE JOURNAL
Physics of Fluids, published by the AIP Publishing with the cooperation of the American Physical Society (APS) Division of Fluid Dynamics, is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>