Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017

When the universe was young, a supermassive black hole -- bloated to the bursting point with stupendous power -- heaved out a jet of particle-infused energy that raced through the vastness of space at nearly the speed of light.

Billions of years later, a trio of Clemson University scientists, led by College of Science astrophysicist Marco Ajello, has identified this black hole and four others similar to it that range in age from 1.4 billion to 1.9 billion years old. These objects emit copious gamma rays, light of the highest energy, that are billions of times more energetic than light that is visible to the human eye.


In the heart of an active galaxy, matter falling toward a supermassive black hole generates jets of particles traveling near the speed of light.

Courtesy of NASA's Goddard Space Flight Center Scientific Visualization Studio

The previously known earliest gamma-ray blazars -- a type of galaxy whose intense emission is powered by extremely powerful relativistic jets launched by monstrous black holes -- were more than 2 billion years old. Currently, the universe is estimated to be approximately 14 billion years old.

"The discovery of these supermassive black holes, which launch jets that emit more energy in one second than our sun will produce in its entire lifetime, was the culmination of a yearlong research project," said Ajello, who has spent much of his career studying the evolution of distant galaxies. "Our next step is to increase our understanding of the mechanisms involved in the formation, development and activities of these amazing objects, which are the most powerful accelerators in the universe. We can't even come close to replicating such massive outputs of energy in our laboratories. The complexities we're attempting to unravel seem almost as mysterious as the black holes themselves."

Ajello conducted his research in conjunction with Clemson post-doc Vaidehi Paliya and Ph.D candidate Lea Marcotulli. The trio worked closely with the Fermi-Large Area Telescope collaboration, which is an international team of scientists that includes Roopesh Ojha, an astronomer at NASA's Goddard Space Flight Center in Greenbelt, Maryland; and Dario Gasparrini of the Italian Space Agency. Their scientific paper titled "Gamma-Ray Blazars Within the First 2 Billion Years" was published Monday in a journal called Astrophysical Journal Letters. (Ackermann, M., et al. 2017, ApJL, 837, L5.)

The Clemson team's breakthroughs were made possible by recently juiced-up software on NASA's Fermi Gamma-ray Telescope. The refurbished software significantly boosted the orbiting telescope's sensitivity to a level that made these latest discoveries possible.

"People are calling it the cheapest refurbishment in history," Ajello said. "Normally, for the Hubble Space Telescope, NASA had to send someone up to space to physically make these kinds of improvements. But in this case, they were able to do it remotely from an Earth-bound location. And of equal importance, the improvements were retroactive, which meant that the previous six years of data were also entirely reprocessed. This helped provide us with the information we needed to complete the first step of our research and also to strive onward in the learning process."

Using Fermi data, Ajello and Paliya began with a catalog of 1.4 million quasars, which are galaxies that harbor at their centers active supermassive black holes. Over the course of a year, they narrowed their search to 1,100 objects. Of these, five were finally determined to be newly discovered gamma-ray blazars that were the farthest away - and youngest - ever identified.

"After using our filters and other devices, we were left with about 1,100 sources. And then we did the diagnostics for all of these and were able to narrow them down to 25 to 30 sources," Paliya said. "But we still had to confirm that what we had detected was scientifically authentic. So we performed a number of other simulations and were able to derive properties such as black hole mass and jet power. Ultimately, we confirmed that these five sources were guaranteed to be gamma-ray blazars, with the farthest one being about 1.4 billion years old from the beginning of time."

Marcotulli, who joined Ajello's group as a Ph.D student in 2016, has been studying the blazars' mechanisms by using images and data delivered from another orbiting NASA telescope, the Nuclear Spectroscopic Telescope Array (NuSTAR). At first, Marcotulli's role was to understand the emission mechanism of gamma-ray blazars closer to us. Now she is turning her attention toward the most distant objects in a quest to understand what makes them so powerful.

"We're trying to understand the full spectrum of the energy distribution of these objects by using physical models," Marcotulli said. "We are currently able to model what's happening far more accurately than previously devised, and eventually we'll be able to better understand what processes are occurring in the jets and which particles are radiating all the energy that we see. Are they electrons? Or protons? How are they interacting with surrounding photons? All these parameters are not fully understood right now. But every day we are deepening our understanding."

All galaxies have black holes at their centers - some actively feeding on the matter surrounding them, others lying relatively dormant. Our own galaxy has at its center a super-sized black hole that is currently dormant. Ajello said that only one of every 10 black holes in today's universe are active. But when the universe was much younger, it was closer to a 50-50 ratio.

The supermassive black holes at the center of the five newly discovered blazar galaxies are among the largest types of black holes ever observed, on the order of hundreds of thousands to billions of times the mass of our own sun. And their accompanying accretion disks - rotating swirls of matter that orbit the black holes - emit more than two trillion times the energy output of our sun.

One of the most surprising elements of Ajello's research is how quickly - by cosmic measures - these supersized black holes must have grown in only 1.4 billion years. In terms of our current knowledge of how black holes grow, 1.4 billion years is barely enough time for a black hole to reach the mass of the ones discovered by Ajello's team.

"How did these incomprehensibly enormous and energy-laden black holes form so quickly?" Ajello said. "Is it because one black hole ate a lot all the time for a very long time? Or maybe because it bumped into other black holes and merged into one? To be honest, we have no observations supporting either argument. There are mechanisms at work that we have yet to unravel. Puzzles that we have yet to solve. When we do eventually solve them, we will learn amazing things about how the universe was born, how it grew into what it has become, and what the distant future might hold as the universe continues to progress toward old age."

Media Contact

Jim Melvin
jsmelvi@clemson.edu
864-784-1707

 @researchcu

http://www.clemson.edu 

Jim Melvin | EurekAlert!

Further reports about: Fermi Galaxies NASA NuSTAR Telescope black hole speed of light supermassive black hole

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>