Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists get better numbers on what happens when electrons get wet

29.01.2018

There's a particular set of chemical reactions that governs many of the processes around us--everything from bridges corroding in water to your breakfast breaking down in your gut. One crucial part of that reaction involves electrons striking water, and despite how commonplace this reaction is, scientists still have to use ballpark numbers for certain parts of the equation when they use computers to model them.

An article published in Nature Communications on Jan. 16 offers a new and better set of numbers from researchers at the University of Chicago, Argonne and Lawrence Livermore National Laboratories, and the University of California-San Diego. By improving computer models, these numbers may eventually help scientists and engineers create better ways to split water for hydrogen fuel and other chemical processes.


A new study paints a more accurate picture of how electrons behave after striking water, and how quickly they're snatched up in chemical reactions.

Credit: Peter Allen/Institute for Molecular Engineering

When an electron is injected into water, the liquid captures it. The energy gain due to this process is called the electron affinity of water, and it's key to understanding and modeling processes such as those occurring in photoelectrochemical cells to split water to generate oxygen and hydrogen, according to Alex Gaiduk, a postdoctoral fellow at UChicago and the lead author of the study.

Until now, scientists faced technical challenges while experimentally measuring the electron affinity of water, said coauthor Giulia Galli, the Liew Family Professor at the Institute for Molecular Engineering at the University of Chicago and senior scientist at Argonne.

"Most of the results quoted in the literature as experimental numbers are actually values obtained by combining some measured quantities with crude theoretical estimates," Galli said.

Accurate theoretical measurements have been out of reach for some time due to the difficulty and high computational cost of simulating the interactions of electrons with water, said University of California-San Diego Professor Francesco Paesani, a co-author of the study who has spent years developing an accurate potential for the modeling of liquid water. But through a combination of Paesani's models, Galli's group's theoretical methods and software and Argonne's supercomputer, they arrived at a new and surprising conclusion.

Fundamentally, the researchers sought to understand whether the liquid binds the electron right away. This determines whether the electron can eventually participate in chemical reactions as it hangs out in the liquid.

According to the results, the electron is bound, but its binding energy is much smaller than previously believed. This prompted the researchers to revisit a number of well-accepted data and models for the electron affinity of water.

"We found large differences between the affinity at the surface and in the bulk liquid. We also found values rather different from those accepted in the literature, which prompted us to revisit the full energy diagram of an electron in water," said Lawrence Livermore National Laboratory scientist and coauthor T.A. Pham.

This finding has important consequences both for the fundamental understanding of the properties of water, as well as for understanding a type of reaction called reduction/oxidation reactions in aqueous solutions. These reactions are widespread in chemistry and biology, including how cells break down food for energy and how objects corrode in water.

Particularly, the information about the energy levels of water is often used during the computational screening of materials for photoelectrochemical cells to break apart water to produce hydrogen as fuel. Having a reliable estimate of the water electron affinity will lead to more robust and reliable computational protocols and better computational screening, the researchers said.

The methods for excited states used in this study were developed over the years by Galli and her co-workers, within collaborations involving Pham and Marco Govoni from Argonne. The study also used supercomputing resources at Argonne.

Media Contact

Louise Lerner
Louise@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Louise Lerner | EurekAlert!

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>