Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian physicists make toy asteroids and blast them with a laser

14.03.2018

A large team of Russian researchers from Rosatom, joined by three MIPT physicists, has modeled the impact of a nuclear explosion on an Earth-threatening asteroid. They manufactured miniature asteroids and blasted them with a laser. The modeling technique developed in this study is a way of experimentally evaluating asteroid destruction criteria such as the explosion energy needed to eliminate a dangerous object on a collision course with Earth. The English translation of the paper reporting the results will appear in the upcoming issue of the Journal of Experimental and Theoretical Physics.

Asteroids are celestial bodies consisting of carbon, silicon, metal, and sometimes ice. Scientists usually classify objects larger than 1 meter as asteroids, although this lower limit is disputed. On the other end of the scale, asteroids get as big as 900 kilometers across. Traveling at 20 kilometers per second, such giants pose a threat of obliterating all life on Earth.


This is an image of asteroid destruction.

Credit: Elena Khavina, MIPT Press Office

There are two basic options when it comes to protecting the planet from a collision with an asteroid: It either has to be deflected or blown into pieces most of which will miss us or burn up in the atmosphere. The authors of the paper explored the second option by modeling the effects of a powerful shock wave released by a nuclear explosion on the asteroid surface.

The research team showed that a brief laser pulse aimed at a miniature replica of an asteroid produces destructive effects similar to those of a nuclear explosion on an actual space rock. The distributions of heat and pressure predicted for the real event generally matched those measured in the scaled-down experiment.

For their laser model to be accurate, the researchers made sure the density and rigidity of the small-scale asteroid -- and even its shape -- mimicked the real thing, and controlled the shock-wave pressures. Thanks to this precise correspondence, the researchers had a way of directly calculating the required energy of a nuclear explosion on the actual asteroid from the energy of a laser pulse destroying its miniature replica.

Thus, for example, to eliminate a 200-meter asteroid, the bomb needs to deliver the energy equivalent of 3 megatons of TNT. This was calculated once the team measured that it took a 500-joule laser pulse to destroy a model 8-10 millimeters in diameter. For the sake of comparison, the most powerful explosive ever detonated -- Tsar Bomba, or "king of bombs," built by the Soviet Union in 1961 -- had an energy output of about 58.6 megatons, though accounts vary.

The research team came up with a technology for manufacturing artificial asteroid material. Its composition corresponds to that of the chondrite (stony) meteorites, which account for about 90 percent of asteroid remains reaching the surface of the Earth. The properties of the model asteroid, including its chemical composition, density, porosity, and rigidity, were adjusted during manufacturing.

The replicas were made using the data on the chondrite meteorite recovered from the bottom of Lake Chebarkul. It is the largest fragment of the asteroid that entered the Earth's atmosphere in February 2013, exploding over Chelyabinsk Oblast, Russia. The asteroid material was manufactured using a combination of sedimentation, compression, and heating, imitating the natural formation process. Out of cylinder-shaped samples, imitation asteroids of various shapes were made, among them spherical, ellipsoidal, and cubical ones.

To confirm that their laser modeling fits in with reality, the researchers also did compressible flow calculations. They showed that a lab asteroid 14-15 orders of magnitude less massive than its space prototype requires almost twice as much energy per unit mass to be completely disrupted.

The experiments made use of three laser devices: Iskra-5, Luch, and Saturn. The laser beam was first amplified to a predetermined power and then directed at the asteroid replica fixed in a vacuum chamber. Model destruction was monitored from behind as well as from the side, and fragmentation dynamics were registered. The laser affected model asteroids for 0.5-30 nanoseconds.

To estimate asteroid destruction criteria, researchers analyzed the data available from the Chelyabinsk meteorite. It entered the Earth's atmosphere as a 20-meter asteroid and fractured into small fragments that caused no catastrophic damage. It therefore makes sense to say that a 200-meter asteroid has been eliminated if it is fractured into pieces with a diameter 10 times smaller and a mass 1,000 times smaller than the Earth-threatening rock itself. For obvious reasons, this conclusion only holds for a 200-meter asteroid entering the atmosphere at a similar angle and for fragments traveling along trajectories similar to that of the Chelyabinsk meteor.

The researchers were also interested in whether the explosion effect is cumulative -- that is, can one powerful explosion be replaced by a succession of smaller ones? They found that multiple weaker laser pulses provide no significant advantage over a single pulse combining their power in terms of the general destruction criterion. This holds for simultaneous as well as consecutive pulses.

In some of the experiments, the laser was targeted at a cavity made in the miniature asteroids ahead of time. By exploiting the cavity, the researchers spent less energy -- namely, 500 instead of 650 joules per gram. Similarly, the effect of a buried nuclear bomb is expected to be more pronounced.

Calculations accounting for the scaling effects indicate that it takes a 3-megaton bomb to eliminate an Earth-threatening nonmetallic asteroid measuring 200 meters across. The research team now plans to expand the study by experimenting with asteroid replicas of different composition, including those containing iron, nickel, and ice. They also intend to identify more precisely how the shape of the asteroid and the presence of cavities on its surface affect the general destruction criterion.

"By accumulating coefficients and dependencies for asteroids of different types, we enable rapid modeling of the explosion so that the destruction criteria can be calculated promptly. At the moment, there are no asteroid threats, so our team has the time to perfect this technique for use later in preventing a planetary disaster," says study co-author Vladimir Yufa, an associate professor at the departments of Applied Physics and Laser Systems and Structured Materials, MIPT. "We're also looking into the possibility of deflecting an asteroid without destroying it and hope for international engagement."

###

The paper reporting the results of the study was published in the Russian edition of the Journal of Experimental and Theoretical Physics by a team of researchers from Rosatom -- a Russian atomic power state corporation -- as well as from MIPT and the Space Research Institute of the Russian Academy of Sciences. The two Rosatom institutes involved in the study are the All-Russian Scientific Research Institute of Experimental Physics and the Troitsk Institute for Innovation and Fusion Research.

Media Contact

Ilyana Zolotareva
shaibakova@phystech.edu
7-977-771-4699

 @phystech_en

https://mipt.ru/english/ 

Ilyana Zolotareva | EurekAlert!

Further reports about: Asteroids Atmosphere diameter earth's atmosphere laser beam laser pulses

More articles from Physics and Astronomy:

nachricht Fusion by strong lasers
05.12.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht NASA's OSIRIS-REx mission explains Bennu's mysterious particle events
05.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>