Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUB physicists let magnetic dipoles interact on the nanoscale for the first time

16.05.2013
'Of great technical interest for future hard disk drives'

Physicists at the Ruhr-Universität Bochum (RUB) have found out how tiny islands of magnetic material align themselves when sorted on a regular lattice - by measurements at BESSY II. Contrary to expectations, the north and south poles of the magnetic islands did not arrange themselves in a zigzag pattern, but in chains.

"The understanding of the driving interactions is of great technological interest for future hard disk drives, which are composed of small magnetic islands", says Prof. Dr. Hartmut Zabel of the Chair of Experimental Physics / Solid State Physics at the RUB. Together with colleagues from the Helmholtz-Zentrum in Berlin, Bochum's researchers report in the journal "Physical Review Letters".

Complete chaos in the normal state

Many atoms behave like compass needles, that is, like little magnetic dipoles with a north and a south pole. If you put them close together in a crystal, all the dipoles should align themselves to each other, making the material magnetic. However, this is not the case. A magnetic material is only created when specific quantum mechanical forces are at work. Normally, the forces between the atomic dipoles are by far too weak to cause magnetic order. Moreover, even at low temperatures, the thermal energy causes so much movement of the dipoles that complete chaos is the result. "However, the fundamental question remains of how magnetic dipoles would align themselves if the force between them was big enough", Prof. Zabel explains the research project.

Square lattice of magnetic islands

To investigate this, the researchers used lithographic methods to cut circular islands of a mere 150 nanometers in diameter from a thin magnetic layer. They arranged these in a regular square lattice. Each island contained about a million atomic dipoles. The forces between two islands were thus stronger by a factor of a million than that between two single atoms. If you leave these dipoles to their own resources, at low temperatures you can observe the arrangement that results exclusively from the interaction between the dipoles. They assume the most favourable pattern in terms of energy, the so-called ground state. The islands serve as a model for the behaviour of atomic dipoles.

Magnetic microscopy

The electron synchrotron BESSY II at the Helmholtz-Zentrum in Berlin is home to a special microscope, the photon emission electron microscope, with which the RUB physicists made the arrangement of the magnetic dipole islands visible. Using circularly polarised synchrotron light (X-ray photons), the photons stimulate specific electrons. These provide information on the orientation of the dipoles in the islands. The experiments were carried out at low temperatures so that the thermal movement could not interfere with the orientation of the dipoles.

Dipoles arrange themselves in chains

The magnetic dipoles formed chains, i.e. the north pole of one island pointed to the south pole of the next island. "This result was surprising", says Zabel. In the lattice, each dipole island has four neighbours to which it could align itself. You cannot tell in advance in which direction the north pole will ultimately point. "In fact, you would expect a zigzag arrangement", says the Bochum physicist. Based on the chain pattern observed in the experiment, the researchers showed that higher order interactions determine how the magnetisation was oriented. Not only dipolar, but also quadrupolar and octopolar interactions play a role. This means that a magnetic island exerts forces on four or eight neighbours at the same time.

Magnetic islands in the hard drives of the future

In future, hard disks will be made up of tiny magnetic islands (bit pattern). Each magnetic island will form a storage unit which can represent the bit states "0" and "1" - encoded through the orientation of the dipole. For a functioning computer, you need a configuration in which the dipole islands interact as little as possible and can thus assume the states "0" and "1"independently of each other. For the technical application, a precise understanding of the driving interactions between magnetic islands is therefore crucial.

Funding

The German Research Foundation (DFG) supported the work in Bochum within the Collaborative Research Centre (SFB) 491 „Magnetic hetero-structures: spin structures and spin transport"; BESSY II at the Helmholtz-Zentrum Berlin is supported by the Federal Ministry of Education and Research (BMBF).

Bibliographic record

M. Ewerlin, D. Demirbas, F. Brüssing, O. Petracic, A.A. Ünal, S. Valencia, F. Kronast, H. Zabel (2013): Magnetic Dipole and Higher Pole Interaction on a Square Lattice, Physical Review Letters, DOI: 10.1103/PhysRevLett.110.177209

Figures online

Two images related to this press release can be found online at: http://aktuell.ruhr-uni-bochum.de/pm2013/pm00144.html.en

Further information

Prof. Dr. Hartmut Zabel
Chair of Experimental Physics / Solid State Physics at the Ruhr-Universität
44780 Bochum, Germany
Editor: Dr. Julia Weiler

Hartmut Zabel | EurekAlert!
Further information:
http://aktuell.ruhr-uni-bochum.de/pm2013/pm00144.html.en

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>